Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A western Sahara centre of domestication inferred from pearl millet genomes

Abstract

There have been intense debates over the geographic origin of African crops and agriculture. Here, we used whole-genome sequencing data to infer the domestication origin of pearl millet (Cenchrus americanus). Our results supported an origin in western Sahara, and we dated the onset of cultivated pearl millet expansion in Africa to 4,900 years ago. We provided evidence that wild-to-crop gene flow increased cultivated genetic diversity leading to diversity hotspots in western and eastern Sahel and adaptive introgression of 15 genomic regions. Our study reconciled genetic and archaeological data for one of the oldest African crops.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic diversity and origin of pearl millet domestication.
Fig. 2: Selection and introgression in pearl millet.

References

  1. Vavilov, N. I. & Dorofeev, V. F. Origin and Geography of Cultivated Plants (Cambridge Univ. Press, Cambridge, 1992).

  2. Harlan, J. R., De Wet, J. M. J. & Stemler, A. B. L. Origins of African Plant Domestication (De Gruyter, Berlin, 1976).

  3. Harlan, J. R. Science 174, 468–474 (1971).

    Article  CAS  Google Scholar 

  4. Varshney, R. K. et al. Nat. Biotechnol. 35, 969–976 (2017).

    Article  CAS  Google Scholar 

  5. Hu, Z. et al. BMC Genom. 16, 1048 (2015).

    Article  Google Scholar 

  6. Dussert, Y., Snirc, A. & Robert, T. Mol. Ecol. 24, 1387–1402 (2015).

    Article  CAS  Google Scholar 

  7. Manning, K. in West African Archaeology: New Developments, New Perspectives (ed. Allsworth-Jones, P.) 43–52 (Archaeopress, Oxford, 2010).

  8. Manning, K., Pelling, R., Higham, T., Schwenniger, J.-L. & Fuller, D. Q. J. Archaeol. Sci. 38, 312–322 (2011).

  9. Ozainne, S. et al. J. Archaeol. Sci. 50, 359–368 (2014).

    Article  Google Scholar 

  10. Oumar, I., Mariac, C., Pham, J.-L. & Vigouroux, Y. Theor. Appl. Genet. 117, 489–497 (2008).

    Article  CAS  Google Scholar 

  11. Berthouly-Salazar, C. et al. Front. Plant Sci. 7, 777 (2016).

  12. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. PLoS Genet. 9, e1003905 (2013).

    Article  Google Scholar 

  13. Cubry, P., Vigouroux, Y. & François, O. Front. Genet. 8, 139 (2017).

  14. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Nature 461, 489–494 (2009).

    Article  CAS  Google Scholar 

  15. Pickrell, J. K. & Pritchard, J. K. PLOS Genet. 8, e1002967 (2012).

    Article  CAS  Google Scholar 

  16. Kröpelin, S. et al. Science 320, 765–768 (2008).

    Article  Google Scholar 

  17. Huerta-Sánchez, E. et al. Nature 512, 194–197 (2014).

    Article  Google Scholar 

  18. Ai, H. et al. Nat. Genet. 47, 217–225 (2015).

    Article  CAS  Google Scholar 

  19. Arnold, B. J. et al. Proc. Natl Acad. Sci. USA 113, 8320–8325 (2016).

    Article  CAS  Google Scholar 

  20. Hufford, M. B. et al. PLoS Genet. 9, e1003477 (2013).

    Article  CAS  Google Scholar 

  21. Nielsen, R. et al. Genome Res. 15, 1566–1575 (2005).

    Article  CAS  Google Scholar 

  22. Dupuy, C. Encycl. Berbère XXXIX, 6529–6544 (2015).

    Google Scholar 

  23. Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Genetics 196, 973–983 (2014).

    Article  Google Scholar 

  24. Frichot, E. & François, O. Methods Ecol. Evol. 6, 925–929 (2015).

    Article  Google Scholar 

  25. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).

  26. Caye, K., Deist, T. M., Martins, H., Michel, O. & François, O. Mol. Ecol. Resour. 16, 540–548 (2016).

    Article  CAS  Google Scholar 

  27. Excoffier, L. & Foll, M. Bioinformatics 27, 1332–1334 (2011).

  28. Ray, N., Currat, M., Foll, M. & Excoffier, L. Bioinformatics 26, 2993–2994 (2010).

    Article  CAS  Google Scholar 

  29. Csilléry, K., Blum, M. G. B., Gaggiotti, O. E. & François, O. Trends Ecol. Evol. 25, 410–418 (2010).

    Article  Google Scholar 

  30. Csilléry, K., François, O. & Blum, M. G. B. Methods Ecol. Evol. 3, 475–479 (2012).

    Article  Google Scholar 

  31. Nielsen, R. et al. PLoS Biol. 3, e170 (2005).

    Article  Google Scholar 

  32. Pavlidis, P., Živković, D., Stamatakis, A. & Alachiotis, N. Mol. Biol. Evol. 30, 2224–2234 (2013).

    Article  CAS  Google Scholar 

  33. Weir, B. S. Genetic Data Analysis II: Methods for Discrete Population Genetic Data (Oxford Univ. Press, Oxford, 1996).

  34. Weir, B. S. & Cockerham, C. C. Evolution 38, 1358–1370 (1984).

    CAS  Google Scholar 

  35. Nei, M. & Li, W. H. Proc. Natl Acad. Sci. USA 76, 5269–5273 (1979).

    Article  CAS  Google Scholar 

  36. Cruickshank, T. E. & Hahn, M. W. Mol. Ecol. 23, 3133–3157 (2014).

    Article  Google Scholar 

  37. Bass, J. D., Dabney, A. & Robinson, D. qvalue: Q-value Estimation for False Discovery Rate Control R package version 2.12.0 (2015).

Download references

Acknowledgements

We are grateful to the Genotoul sequencing platform Toulouse Midi-Pyrenees for help during sequencing. We also want to thank N. Tando and the IRD itrop Plantes Santé bioinformatic platform for providing HPC resources and support for our research project. Y.V. acknowledges support from the Agence Nationale de la Recherche (ANR-13-BSV7-0017). C.B.-S. acknowledges support from Agropolis Fondation under the reference ID 1403-057 through the Investissements d’avenir programme (Labex Agro: ANR-10-LABX-0001-01).

Author information

Authors and Affiliations

Authors

Contributions

C.B., P.C., N.A.K., A.B., O.F., C.B.-S. and Y.V. designed the analysis. C.B. and P.C. performed statistical analyses. C.M. and M.C. performed additional experimental work. B.R., N.S., C.D., M.T., C.S. and O.F. contributed to analytic tools, data, methods and participated in data analysis; X.L., X.X., R.K.V. and Y.V. managed and designed the pearl millet genome project. O.F., C.B.-S. and Y.V. managed this genomic diversity study. C.B., P.C., C.B.-S. and Y.V. wrote the manuscript.

Corresponding authors

Correspondence to Concetta Burgarella, Philippe Cubry, Olivier François, Cécile Berthouly-Salazar or Yves Vigouroux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary data, models, references, tables and figures

Reporting Summary

Supplementary Table 1

Passport data

Supplementary Table 7

Gene models and annotation for genomic regions under selection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgarella, C., Cubry, P., Kane, N.A. et al. A western Sahara centre of domestication inferred from pearl millet genomes. Nat Ecol Evol 2, 1377–1380 (2018). https://doi.org/10.1038/s41559-018-0643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0643-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing