The evolutionary events that cause colorectal adenomas (benign) to progress to carcinomas (malignant) remain largely undetermined. Using multi-region genome and exome sequencing of 24 benign and malignant colorectal tumours, we investigate the evolutionary fitness landscape occupied by these neoplasms. Unlike carcinomas, advanced adenomas frequently harbour sub-clonal driver mutations—considered to be functionally important in the carcinogenic process—that have not swept to fixation, and have relatively high genetic heterogeneity. Carcinomas are distinguished from adenomas by widespread aneusomies that are usually clonal and often accrue in a ‘punctuated’ fashion. We conclude that adenomas evolve across an undulating fitness landscape, whereas carcinomas occupy a sharper fitness peak, probably owing to stabilizing selection.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

Raw data are available via the European Genome-Phenome Archive (https://ega-archive.org/) accession code: EGAS00001003066.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Morson, B. C. Evolution of cancer of the colon and rectum. Cancer 34, 845–849 (1974).

  2. 2.

    Ashton-Rickardt, P. G. et al. High frequency of APC loss in sporadic colorectal carcinoma due to breaks clustered in 5q21–22. Oncogene 4, 1169–1174 (1989).

  3. 3.

    Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).

  4. 4.

    Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

  5. 5.

    Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

  6. 6.

    Smith, G. et al. Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc. Natl Acad. Sci. USA 99, 9433–9438 (2002).

  7. 7.

    Muzny, D. M. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  8. 8.

    Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

  9. 9.

    Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

  10. 10.

    Wright, S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. In Proc. 6th International Congress of Genetics Vol. 1 356–366 (1932).

  11. 11.

    Yap, T. A., Gerlinger, M., Futreal, P. A., Pusztai, L. & Swanton, C. Intratumor heterogeneity: seeing the wood for the trees. Sci. Transl. Med. 4, 127ps10 (2012).

  12. 12.

    Blum, M. G. B. & François, O. On statistical tests of phylogenetic tree imbalance: the Sackin and other indices revisited. Math. Biosci. 195, 141–153 (2005).

  13. 13.

    Fischer, A., Illingworth, C. J., Campbell, P. J. & Mustonen, V. EMu: probabilistic inference of mutational processes and their localization in the cancer genome. Genome Biol. 14, R39 (2013).

  14. 14.

    Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

  15. 15.

    Katainen, R. et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47, 818–821 (2015).

  16. 16.

    Quirke, P. et al. DNA aneuploidy in colorectal adenomas. Br. J. Cancer 53, 477–481 (1986).

  17. 17.

    Jones, A. M. et al. Analysis of copy number changes suggests chromosomal instability in a minority of large colorectal adenomas. J. Pathol. 213, 249–256 (2007).

  18. 18.

    Wang, H., Liang, L., Fang, J.-Y. & Xu, J. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers. Oncogene 35, 2011–2019 (2016).

  19. 19.

    Durinck, S. et al. Temporal dissection of tumorigenesis in primary cancers. Cancer Discov. 1, 137–143 (2011).

  20. 20.

    Newman, S. et al. The relative timing of mutations in a breast cancer genome. PLoS ONE 8, e64991 (2013).

  21. 21.

    Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999).

  22. 22.

    Kim, T.-M. et al. Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity. Clin. Cancer Res. 21, 4461–4472 (2015).

  23. 23.

    Uchi, R. et al. Integrated multiregional analysis proposing a new model of colorectal cancer evolution. PLoS Genet. 12, e1005778 (2016).

  24. 24.

    Suzuki, Y. et al. Multiregion ultra-deep sequencing reveals early intermixing and variable levels of intratumoral heterogeneity in colorectal cancer. Mol. Oncol. 11, 124–139 (2017).

  25. 25.

    Kim, T.-M. et al. Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma. Oncotarget 6, 27725–27735 (2015).

  26. 26.

    Stachler, M. D. et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet. 47, 1047–1055 (2015).

  27. 27.

    Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

  28. 28.

    Ross-Innes, C. S. et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat. Genet. 47, 1038–1046 (2015).

  29. 29.

    Andrews, S. FastQC: a quality control tool for high throughput sequence data (Babraham Bioinformatics, 2013); http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  30. 30.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  31. 31.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  32. 32.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078–2079 (2009).

  33. 33.

    Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet. 46, 912–918 (2014).

  34. 34.

    Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

  35. 35.

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

  36. 36.

    Hasan, M. S., Wu, X. & Zhang, L.Performance evaluation of indel calling tools using real short-read data.Hum. Genom. 9, 20 (2015).

  37. 37.

    Narzisi, G. et al. Accurate de novo and transmitted indel detection in exome-capture data using microassembly. Nat. Methods 11, 1033–1036 (2014).

  38. 38.

    Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14, 178–192 (2013).

  39. 39.

    Fischer, A., Vázquez-García, I., Illingworth, C. J. R. & Mustonen, V. High-definition reconstruction of clonal composition in cancer. Cell Rep. 7, 1740–1752 (2014).

  40. 40.

    Werner, B., Traulsen, A., Sottoriva, A. & Dingli, D. Detecting truly clonal alterations from multi-region profiling of tumours. Sci. Rep. 7, 44991 (2017).

  41. 41.

    Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

  42. 42.

    Paradis, E., Claude, J. & Strimmer, K.APE: analyses of phylogenetics and evolution in R language.Bioinformatics 20, 289–290 (2004).

  43. 43.

    Bortolussi, N., Durand, E., Blum, M. & Francois, O. apTreeshape: statistical analysis of phylogenetic tree shape. Bioinformatics 22, 363–364 (2005).

Download references


S.J.L., T.A.G. (A19771) and I.P.M.T. (A27327) are funded by Cancer Research UK. We acknowledge core funding provided to the Wellcome Trust Centre for Human Genetics from the Wellcome Trust (090532/Z/09/Z). T.A.G. and S.J.L. were also supported by the Bowel and Cancer Research small grant scheme. T.A.G. was also supported by the Wellcome Trust (202778/Z/16/Z). V.M. was supported in part by funding from the Wellcome Trust (098051). M. Kovac was supported by the Krebsliga beider Basel (grant no. KLBB-12-2013) and the University of Basel (‘Förderung exzellenter Nachwuchsforschender’). A-M.B. also acknowledges funding from Cancer Research UK (A14895). D.C.W. is supported by the Li Ka Shing Foundation. X.J. and I.P.M.T. are supported by an ERC advanced grant (EVOCAN-340560). The S:CORT study is funded by the MRC and Cancer Research UK. K.H is supported by Krebsliga Zentralschweiz. A.S. is supported by the Wellcome Trust (202778/B/16/Z), Cancer Research UK (A22909) and the Chris Rokos Fellowship in Evolution and Cancer. This work was also supported a Wellcome Trust award to the Centre for Evolution and Cancer (105104/Z/14/Z). J.E.E. was funded by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC). V.H.K. was funded by the Swiss National Science Foundation (P2SKP3_168322 / 1 and P2SKP3_168322 / 2). D.T. acknowledges funding from the EPSRC (grant no.: EP/F500351/1).

Author information

Author notes

  1. A list of participants and their affiliations appears at the end of the paper.


  1. Evolution and Cancer Laboratory, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK

    • William Cross
    • , Daniel Temko
    • , Ann-Marie Baker
    • , Pierre Martinez
    •  & Trevor A. Graham
  2. Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK

    • William Cross
    • , Michal Kovac
    • , Viktor H. Koelzer
    • , Enric Domingo
    • , Yun Feng
    •  & Ian Tomlinson
  3. Bone Tumour Reference Center at the Institute of Pathology, University Hospital Basel, Basel, Switzerland

    • Michal Kovac
  4. Organismal and Evolutionary Biology Research Programme, Department of Computer Science, Institute of Biotechnology, Helsinki Institute for Information Technology HIIT, University of Helsinki, Helsinki, Finland

    • Ville Mustonen
  5. CoMPLEX, Department of Computer Science, University College London, London, UK

    • Daniel Temko
  6. Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK

    • Hayley Davis
    • , Sujata Biswas
    • , Simon Leedham
    •  & Simon J. Leedham
  7. Cancer Bioinfomatics Group, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

    • Roland Arnold
    •  & Jean-Baptiste Cazier
  8. Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

    • Laura Chegwidden
    •  & Claire Palles
  9. Integrated Mathematical Oncology Department, Moffitt Comprehensive Cancer Centre, Tampa, FL, USA

    • Chandler Gatenbee
    •  & Alexander R. Anderson
  10. Institute of Pathology, University of Bern, Bern, Switzerland

    • Viktor H. Koelzer
  11. Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

    • Xiaowei Jiang
    • , Ian Tomlinson
    •  & Ian P. M. Tomlinson
  12. Big Data Institute, University of Oxford, Oxford, UK

    • Dan J. Woodcock
    • , Chris Holmes
    •  & David C. Wedge
  13. Institute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovakia

    • Monika Kovacova
  14. Department of Oncology, University of Oxford, Oxford, UK

    • Tim Maughan
    • , Francesca Buffa
    • , Enric Domingo
    • , Andrew Blake
    • , Geoff Higgins
    • , Tim Maughan
    • , Gillies McKenna
    • , Anna Schuh
    •  & Ricky Sharma
  15. Department of Research Pathology, Cancer Institute, University College London, London, UK

    • Marnix Jansen
    •  & Manuel Rodriguez-Justo
  16. Department of Surgery, University Hospitals Birmingham, Birmingham, UK

    • Simon Bach
    • , Andrew Beggs
    • , Dion Morton
    •  & Shazad Ashraf
  17. Department of Colorectal Surgery, Cancer Centre, Churchill Hospital, Oxford University Hospital NHS Foundation Trust, Oxford, UK

    • Richard Guy
    •  & Christopher Cunningham
  18. Translational Gastroenterology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK

    • Simon Leedham
    • , James E. East
    •  & Simon J. Leedham
  19. Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK

    • Lai Mun Wang
  20. Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland

    • Karl Heinimann
  21. Department of Biomedicine, University of Basel, Basel, Switzerland

    • Karl Heinimann
  22. Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK

    • Andrea Sottoriva
  23. Department of Histopathology, University Hospitals Birmingham, Birmingham, UK

    • Ian P. M. Tomlinson
  24. Centre for Trials Research, Cardiff University, Cardiff, UK

    • Richard Adams
  25. Clinical Trials Unit, University College London, London, UK

    • Louise Brown
    •  & Rick Kaplan
  26. Department of Statistics, University of Oxford, Oxford, UK

    • Che-Hsi Wu
    •  & Chris Holmes
  27. Wellcome Trust Sanger Institute, Hinxton, UK

    • Ekaterina Chatzpili
    •  & Ultan McDermott
  28. Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, Leeds, UK

    • Susan Richman
    • , Phil Quirke
    • , David Sebag-Montefiore
    • , Matt Seymour
    •  & Nicholas West
  29. School of Medicine, Queens University Belfast, Belfast, UK

    • Philip Dunne
    • , Paul Harkin
    • , Richard Kennedy
    • , Mark Lawler
    • , Manuel Salto-Tellez
    •  & Richard Wilson
  30. Department of General Surgery, Manchester Royal Infirmary, Manchester, UK

    • Jim Hill
  31. European Alliance for Personalised Medicine, Brussels, Belgium

    • Denis Horgan
  32. Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK

    • Gary Middleton
  33. Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

    • Graeme Murray
    •  & Les Samuel
  34. Institute of Cancer Policy, Kings College London, London, UK

    • Richard Sullivan


  1. Search for William Cross in:

  2. Search for Michal Kovac in:

  3. Search for Ville Mustonen in:

  4. Search for Daniel Temko in:

  5. Search for Hayley Davis in:

  6. Search for Ann-Marie Baker in:

  7. Search for Sujata Biswas in:

  8. Search for Roland Arnold in:

  9. Search for Laura Chegwidden in:

  10. Search for Chandler Gatenbee in:

  11. Search for Alexander R. Anderson in:

  12. Search for Viktor H. Koelzer in:

  13. Search for Pierre Martinez in:

  14. Search for Xiaowei Jiang in:

  15. Search for Enric Domingo in:

  16. Search for Dan J. Woodcock in:

  17. Search for Yun Feng in:

  18. Search for Monika Kovacova in:

  19. Search for Tim Maughan in:

  20. Search for Marnix Jansen in:

  21. Search for Manuel Rodriguez-Justo in:

  22. Search for Shazad Ashraf in:

  23. Search for Richard Guy in:

  24. Search for Christopher Cunningham in:

  25. Search for James E. East in:

  26. Search for David C. Wedge in:

  27. Search for Lai Mun Wang in:

  28. Search for Claire Palles in:

  29. Search for Karl Heinimann in:

  30. Search for Andrea Sottoriva in:

  31. Search for Simon J. Leedham in:

  32. Search for Trevor A. Graham in:

  33. Search for Ian P. M. Tomlinson in:


  1. The S:CORT Consortium


I.P.M.T., T.A.G. and S.J.L. conceived and designed the study. R.G., J.E.E., L.M.W., K.H., S.J.L. and I.P.M.T. provided the samples. H.D., A.-M.B., S.B. and L.C. performed the experiments. W.C., M. Kovac, V.M., P.M., R.A. and D.C.W. performed the bioinformatics analysis. W.C. and D.T. performed the mathematical analysis. C.G., A.R.A. and V.H.K. performed the image analysis. M.J., M.R.-J. and L.M.W. performed the pathology assessment. E.D., T.M. and the S:CORT consortium provided reference data. W.C., M. Kovac, V.M., D.T., R.A., V.H.K., X.J., D.C.W., Y.F., M.Kovacova, S.A., A.S., S.J.L., T.A.G. and I.P.M.T. analysed the data. W.C., A.S., S.J.L., T.A.G. and I.P.M.T. performed the evolutionary analysis. W.C., T.A.G. and I.P.M.T. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Trevor A. Graham or Ian P. M. Tomlinson.

Supplementary information

  1. Supplementary Information

    Supplementary figures 1–9; Supplementary modelling; Supplementary table legends

  2. Reporting Summary

  3. Supplementary tables

    Supplementary tables 1–7

About this article

Publication history