Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks

Abstract

Habitat fragmentation is a primary threat to biodiversity, but how it affects the structure and stability of ecological networks is poorly understood. Here, we studied plant–pollinator and host–parasitoid networks on 32 calcareous grassland fragments covering a size gradient of several orders of magnitude and with amounts of additional habitat availability in the surrounding landscape that varied independent of fragment size. We find that additive and interactive effects of habitat fragmentation at local (fragment size) and landscape scales (1,750 m radius) directly shape species communities by altering the number of interacting species and, indirectly, their body size composition. These, in turn, affect plant–pollinator, but not host–parasitoid, network structure: the nestedness and modularity of plant–pollinator networks increase with pollinator body size. Moreover, pollinator richness increases modularity. In contrast, the modularity of host–parasitoid networks decreases with host richness, whereas neither parasitoid richness nor body size affects network structure. Simulating species coextinctions also reveals that the structure–stability relationship depends on species’ sensitivity to coextinctions and their capacity for adaptive partner switches, which differ between mutualistic and antagonistic interaction partners. While plant–pollinator communities may cope with future habitat fragmentation by responding to species loss with opportunistic partner switches, past effects of fragmentation on the current structure of host–parasitoid networks may strongly affect their robustness to coextinctions under future habitat fragmentation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Map of the study area, and examples of study landscapes and associated plant–pollinator and host–parasitoid interaction networks.
Fig. 2: SEMs of the effects of habitat fragmentation on the structure and stability of plant–pollinator and host–parasitoid interaction networks.
Fig. 3: Interactive effects of fragment size and the proportion of additional semi-natural habitats within a 1,750 m radius on the species richness of pollinators and hosts.
Fig. 4: The effects of current network structure on network robustness to simulated future species extinctions depend on species sensitivity to coextinction and rewiring capacity, and differ between plant–pollinator and host–parasitoid networks.

References

  1. 1.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article  Google Scholar 

  2. 2.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  Google Scholar 

  3. 3.

    Hagen, M. & Kraemer, M. Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest. Biol. Conserv. 143, 1654–1663 (2010).

    Article  Google Scholar 

  4. 4.

    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48, 25–48 (2017).

    Article  Google Scholar 

  5. 5.

    Steffan-Dewenter, I. & Tscharntke, T. Effects of habitat isolation on pollinator communities and seed set. Oecologia 121, 432–440 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).

    Article  Google Scholar 

  7. 7.

    Winfree, R., Aguilar, R. & LeBuhn, G. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Thies, C. & Tscharntke, T. Landscape structure and biological control in agroecosystems. Science 285, 893–895 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kruess, A. Effects of landscape structure and habitat type on a plant–herbivore–parasitoid community. Ecography 26, 283–290 (2003).

    Article  Google Scholar 

  11. 11.

    Fenoglio, M. S., Srivastava, D., Valladares, G., Cagnolo, L. & Salvo, A. Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology 93, 2407–2420 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Thies, C., Steffan-Dewenter, I. & Tscharntke, T. Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101, 18–25 (2003).

    Article  Google Scholar 

  13. 13.

    Tscharntke, T., Gathmann, A. & Steffan-Dewenter, I. Bioindication using trap-nesting bees and wasps and their natural enemies: community structure and interactions. J. Appl. Ecol. 35, 708–719 (1998).

    Article  Google Scholar 

  14. 14.

    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hopfenmüller, S., Steffan-Dewenter, I. & Holzschuh, A. Trait-specific responses of wild bee communities to landscape composition, configuration and local factors. PLoS ONE 9, e104439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tscharntke, T. & Brandl, R. Plant–insect interactions in fragmented landscapes. Annu. Rev. Entomol. 49, 405–430 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. Biol. Sci. 277, 2075–2082 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia 149, 289–300 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hanski, I. A practical model of metapopulation dynamics. J. Anim. Ecol. 63, 151–162 (1994).

    Article  Google Scholar 

  21. 21.

    Jauker, B., Krauss, J., Jauker, F. & Steffan-Dewenter, I. Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landsc. Ecol. 28, 107–120 (2013).

    Article  Google Scholar 

  22. 22.

    Spiesman, B. J. & Inouye, B. D. Habitat loss alters the architecture of plant–pollinator interaction networks. Ecology 94, 2688–2696 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Burkle, L. & Knight, T. Shifts in pollinator composition and behavior cause slow interaction accumulation with area in plant–pollinator networks. Ecology 93, 2329–2335 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–120 (2012).

    Article  Google Scholar 

  25. 25.

    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Bascompte, J. & Jordano, P. Plant–animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

    Article  Google Scholar 

  30. 30.

    Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Stang, M., Klinkhamer, P. G. L., Waser, N. M., Stang, I. & van der Meijden, E. Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Ann. Bot. 103, 1459–1469 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sargent, R. D. & Ackerly, D. D. Plant–pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123–130 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Rohr, R., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Teng, J. & McCann, K. S. Dynamics of compartmented and reticulate food webs in relation to energetic flows. Am. Nat. 164, 85–100 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Steffan-Dewenter, I. Importance of habitat area and landscape context fragmented orchard meadows. Conserv. Biol. 17, 1036–1044 (2003).

    Article  Google Scholar 

  43. 43.

    Jauker, F., Diekötter, T., Schwarzbach, F. & Wolters, V. Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).

    Article  Google Scholar 

  44. 44.

    Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).

    Article  Google Scholar 

  47. 47.

    Colwell, R. K., Dunn, R. R. & Harris, N. C. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Evol. Syst. 43, 183–203 (2012).

    Article  Google Scholar 

  48. 48.

    Carrié, R. et al. Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography 40, 85–97 (2017).

    Article  Google Scholar 

  49. 49.

    Bartomeus, I., Cariveau, D. P., Harrison, T. & Winfree, R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127, 306–315 (2017).

    Article  Google Scholar 

  50. 50.

    Brose, U. et al. Predicting the consequences of species loss using size-structured biodiversity approaches. Biol. Rev. Camb. Phil. Soc. 92, 684–697 (2017).

    Article  Google Scholar 

  51. 51.

    Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38, 380–392 (2015).

    Article  Google Scholar 

  52. 52.

    Olesen, J. M., Bascompte, J., Elberling, H., Jordano, P. & Jens, M. Temporal dynamics in a pollination network. Ecology 89, 1573–1582 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Grass, I., Berens, D. G. & Farwig, N. Natural habitat loss and exotic plants reduce the functional diversity of flower visitors in a heterogeneous subtropical landscape. Funct. Ecol. 28, 1117–1126 (2014).

    Article  Google Scholar 

  54. 54.

    Revilla, T. A., Encinas-Viso, F. & Loreau, M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124, 22–32 (2015).

    Article  Google Scholar 

  55. 55.

    Dormann, C. F., Fründ, J. & Schaefer, H. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584 (2017).

    Article  Google Scholar 

  56. 56.

    Poschlod, P. & WallisDeVries, M. F. The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol. Conserv. 104, 361–376 (2002).

    Article  Google Scholar 

  57. 57.

    Steffan-Dewenter, I. & Tscharntke, T. Insect communities and biotic interactions on fragmented calcareous grasslands—a mini review. Biol. Conserv. 104, 275–284 (2002).

    Article  Google Scholar 

  58. 58.

    Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Stouffer, D. B., Sales-Pardo, M., Sirer, M. I. & Bascompte, J. Evolutionary conservation of species’ roles in food webs. Science 335, 1489–1492 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Trøjelsgaard, K., Jordano, P., Carstensen, D. W. & Olesen, J. M. Geographical variation in mutualistic networks: similarity, turnover and partner fidelity. Proc. R. Soc. B 282, 20142925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996).

    Article  Google Scholar 

  64. 64.

    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Moir, M. L. et al. Current constraints and future directions in estimating coextinction. Conserv. Biol. 24, 682–690 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Poulin, R., Krasnov, B. R. & Mouillot, D. Host specificity in phylogenetic and geographic space. Trends Parasitol. 27, 355–361 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Amiet, F., Müller, A. & Praz, C. Apidae 1: Apis, Bombus (Fauna Helvetica 29) (CSCF & SEG, Neuchâtel, 2017).

  70. 70.

    Amiet, F., Müller, A. & Neumeyer, R. Apidae 2: Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha (Fauna Helvetica 4) (CSCF & SEG, Neuchâtel, 2014).

  71. 71.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 3: Halictus, Lasioglossum (Fauna Helvetica 6) (CSCF & SEG, Neuchâtel, 2001).

  72. 72.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 4: Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis (Fauna Helvetica 9) (CSCF & SEG, Neuchâtel, 2004).

  73. 73.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 5: Ammobates, Ammobatoides, Anthophora, Biastes, Ceratina, Dasypoda, Epeoloides, Epeolus, Eucera, Macropis, Melecta, Melitta, Nomada, Pasites, Tetralonia, Thyreus, Xylocopa (Fauna Helvetica 20) (CSCF & SEG, Neuchâtel, 2007).

  74. 74.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 6: Andrena, Melitturga, Panurginus, Panurgus (Fauna Helvetica 26) (CSCF & SEG, Neuchâtel, 2010).

  75. 75.

    van Veen, M. Hoverflies of Northwest Europe: Identification Keys to the Syrphidae (KNNV Publishing, Zeist, 2010).

  76. 76.

    Dalsgaard, B. et al. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant–frugivore interaction systems. Ecography 40, 1395–1401 (2017).

    Article  Google Scholar 

  77. 77.

    Chacoff, N. P. et al. Evaluating sampling completeness in a desert plant–pollinator network. J. Anim. Ecol. 81, 190–200 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).

    Google Scholar 

  79. 79.

    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Albrecht, J. et al. Correlated loss of ecosystem services in coupled mutualistic networks. Nat. Commun. 5, 3810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Olesen, J. M. et al. Missing and forbidden links in mutualistic networks. Proc. Biol. Sci. 278, 725–732 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Devoto, M., Bailey, S., Craze, P. & Memmott, J. Understanding and planning ecological restoration of plant–pollinator networks. Ecol. Lett. 15, 319–328 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Vázquez, D. P. et al. The strength of plant–pollinator interactions. Ecology 93, 719–725 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Vázquez, D. P., Morris, W. F. & Jordano, P. Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol. Lett. 8, 1088–1094 (2005).

    Article  Google Scholar 

  85. 85.

    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).

    Article  Google Scholar 

  86. 86.

    Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).

    Article  Google Scholar 

  87. 87.

    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Steffan-Dewenter, I. Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conserv. Biol. 17, 1036–1044 (2002).

    Article  Google Scholar 

  91. 91.

    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    Article  Google Scholar 

  94. 94.

    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Article  Google Scholar 

  95. 95.

    Sebastián-González, E., Dalsgaard, B., Sandel, B. & Guimarães, P. R. Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters. Glob. Ecol. Biogeogr. 24, 293–303 (2015).

    Article  Google Scholar 

  96. 96.

    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  98. 98.

    Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Zhang, D. A coefficient of determination for generalized linear models. Am. Stat. 1305, 1–20 (2016).

    Google Scholar 

  100. 100.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

  101. 101.

    Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).

    Google Scholar 

  102. 102.

    Zhang, D. rsq: R-Squared and Related Measures R Package Version 1.0.1 (2018).

Download references

Acknowledgements

We thank J. Albrecht for helpful comments, and E. Topp and K. Udy for linguistic revision. I.G. and T.T. acknowledge support from DFG Research Training Group 1644 ‘Scaling Problems in Statistics’. Field work was funded by the European Union Framework Programme 6 Integrated Project ALARM (Assessing LArge scale environmental Risks for biodiversity with tested Methods; Pollinator Module GOCECT-2003-506675).

Author information

Affiliations

Authors

Contributions

I.G., B.J., I.S.-D., T.T. and F.J. conceived the study. I.S.-D. obtained the funding and designed the field study. B.J. and F.J. conducted the field work and compiled the data. I.G. analysed the data and prepared the manuscript. All authors discussed the results and contributed to revisions of the manuscript.

Corresponding author

Correspondence to Ingo Grass.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–8

Reporting Summary

Supplementary Data 1

Order of plants and host species in extinction sequences used for the coextinction

Supplementary Data 2

Site data and network metrics for the 32 plant-pollinator and 32 host-parasitoid networks

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grass, I., Jauker, B., Steffan-Dewenter, I. et al. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nat Ecol Evol 2, 1408–1417 (2018). https://doi.org/10.1038/s41559-018-0631-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing