Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite


Plant water storage is fundamental to the functioning of terrestrial ecosystems by participating in plant metabolism, nutrient and sugar transport, and maintenance of the integrity of the hydraulic system of the plant. However, a global view of the size and dynamics of the water pools stored in plant tissues is still lacking. Here, we report global patterns of seasonal variations in ecosystem-scale plant water storage and their relationship with leaf phenology, based on space-borne measurements of L-band vegetation optical depth. We find that seasonal variations in plant water storage are highly synchronous with leaf phenology for the boreal and temperate forests, but asynchronous for the tropical woodlands, where the seasonal development of plant water storage lags behind leaf area by up to 180 days. Contrasting patterns of the time lag between plant water storage and terrestrial groundwater storage are also evident in these ecosystems. A comparison of the water cycle components in seasonally dry tropical woodlands highlights the buffering effect of plant water storage on the seasonal dynamics of water supply and demand. Our results offer insights into ecosystem-scale plant water relations globally and provide a basis for an improved parameterization of eco-hydrological and Earth system models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Seasonal amplitude of L-VOD.
Fig. 2: Relationship between seasonal amplitude of L-VOD and LAI.
Fig. 3: Temporal coupling between L-VOD and LAI seasonality.
Fig. 4: Temporal coupling between L-VOD and TWS seasonality.
Fig. 5: Seasonal water balance in two contrasting ecosystems.


  1. 1.

    Street, H. E. & Cockburn, W. Plant Metabolism 2nd edn (Elsevier, Oxford, 1972).

  2. 2.

    Sack, L. et al. Plant hydraulics as a central hub integrating plant and ecosystem function: meeting report for ‘Emerging Frontiers in Plant Hydraulics’ (Washington, DC, May 2015). Plant Cell Environ. 39, 2085–2094 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Change 5, 459–464 (2015).

    Article  CAS  Google Scholar 

  4. 4.

    De Boer, A. H. & Volkov, V. Logistics of water and salt transport through the plant: structure and functioning of the xylem. Plant Cell Environ. 26, 87–101 (2003).

    Article  CAS  Google Scholar 

  5. 5.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hartzell, S., Bartlett, M. S. & Porporato, A. The role of plant water storage and hydraulic strategies in relation to soil moisture availability. Plant Soil 419, 503–521 (2017).

    Article  CAS  Google Scholar 

  7. 7.

    Matheny, A. M. et al. Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere 6, 1–13 (2015).

    Article  Google Scholar 

  8. 8.

    Jones, H. G. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58, 119–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wullschleger, S. D., Meinzer, F. C. & Vertessy, R. A. A review of whole-plant water use studies in tree. Tree Physiol. 18, 499–512 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Goldstein, G. et al. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ. 21, 397–406 (1998).

    Article  Google Scholar 

  11. 11.

    Jackson, T. J. & Schmugge, T. J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).

    Article  Google Scholar 

  12. 12.

    Van de Griend, A. A. & Wigneron, J. P. The b-factor as a function of frequency and canopy type at H-polarization. IEEE Trans. Geosci. Remote Sens. 42, 786–794 (2004).

    Article  Google Scholar 

  13. 13.

    Guglielmetti, M. et al. Measured microwave radiative transfer properties of a deciduous forest canopy. Remote Sens. Environ. 109, 523–532 (2007).

    Article  Google Scholar 

  14. 14.

    Santi, E., Paloscia, S., Pampaloni, P. & Pettinato, S. Ground-based microwave investigations of forest plots in Italy. IEEE Trans. Geosci. Remote Sens. 47, 3016–3025 (2009).

    Article  Google Scholar 

  15. 15.

    Ferrazzoli, P., Guerriero, L. & Wigneron, J. P. Simulating L-band emission of forests in view of future satellite applications. IEEE Trans. Geosci. Remote Sens. 40, 2700–2708 (2002).

    Article  Google Scholar 

  16. 16.

    Sternberg, M. & Shoshany, M. Aboveground biomass allocation and water content relationships in Mediterranean trees and shrubs in two climatological regions in Israel. Plant Ecol. 157, 173–181 (2001).

    Article  Google Scholar 

  17. 17.

    Jones, M. O., Jones, L. A., Kimball, J. S. & McDonald, K. C. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011).

    Article  Google Scholar 

  18. 18.

    Tian, F. et al. Remote sensing of vegetation dynamics in drylands: evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).

    Article  Google Scholar 

  19. 19.

    Momen, M. et al. Interacting effects of leaf water potential and biomass on vegetation optical depth. J. Geophys. Res. Biogeosci. 122, 3031–3046 (2017).

    Article  Google Scholar 

  20. 20.

    Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2016).

    Article  Google Scholar 

  21. 21.

    Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Kerr, Y. H. et al. The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc. IEEE 98, 666–687 (2010).

    Article  Google Scholar 

  23. 23.

    Fernandez-Moran, R. et al. SMOS-IC: an alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 9, 457 (2017).

    Article  Google Scholar 

  24. 24.

    Wigneron, J. P. et al. L-band microwave emission of the biosphere (L-MEB) model: description and calibration against experimental data sets over crop fields. Remote Sens. Environ. 107, 639–655 (2007).

    Article  Google Scholar 

  25. 25.

    Oliva, R. et al. SMOS radio frequency interference scenario: status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band. IEEE Trans. Geosci. Remote Sens. 50, 1427–1439 (2012).

    Article  Google Scholar 

  26. 26.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

  27. 27.

    Kobayashi, T., Tsend-Ayush, J. & Tateishi, R. A new tree cover percentage map in Eurasia at 500 m resolution using MODIS data. Remote Sens. 6, 209–232 (2014).

    Article  Google Scholar 

  28. 28.

    Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015).

    Article  Google Scholar 

  29. 29.

    Rahmoune, R. et al. SMOS retrieval results over forests: comparisons with independent measurements. IEEE J. Sel. Topics Appl. Earth Observ. 7, 3858–3866 (2014).

    Article  Google Scholar 

  30. 30.

    Konings, A. G., Piles, M., Das, N. & Entekhabi, D. L-band vegetation optical depth and effective scattering albedo estimation from SMAP. Remote Sens. Environ. 198, 460–470 (2017).

    Article  Google Scholar 

  31. 31.

    Morris, H. et al. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol. 209, 1553–1565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).

    Article  Google Scholar 

  33. 33.

    Tyree, M. T. & Sperry, J. S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 19–36 (1989).

    Article  Google Scholar 

  34. 34.

    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data 9, 791–808 (2017).

    Article  Google Scholar 

  36. 36.

    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth System. Science 305, 503–505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Pokhrel, Y. N., Fan, Y., Miguez‐Macho, G., Yeh, P. J. F. & Han, S. C. The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J. Geophys. Res. Atmos. 118, 3233–3244 (2013).

    Article  Google Scholar 

  38. 38.

    Köcher, P., Horna, V. & Leuschner, C. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiol. 33, 817–832 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ryan, C. M., Williams, M., Grace, J., Woollen, E. & Lehmann, C. E. R. Pre-rain green-up is ubiquitous across southern tropical Africa: implications for temporal niche separation and model representation. New Phytol. 213, 625–633 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Guan, K. et al. Terrestrial hydrological controls on land surface phenology of African savannas and woodlands. J. Geophys. Res. Biogeosci. 119, 1652–1669 (2014).

    Article  Google Scholar 

  41. 41.

    Reich, P. B. Phenology of tropical forests: patterns, causes, and consequences. Can. J. Bot. 73, 164–174 (1995).

    Article  Google Scholar 

  42. 42.

    Williams, R. J., Myers, B. A., Muller, W. J., Duff, G. A. & Eamus, D. Leaf phenology of woody species in a north Australian tropical savanna. Ecology 78, 2542–2558 (1997).

    Article  Google Scholar 

  43. 43.

    Borchert, R. Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75, 1437–1449 (1994).

    Article  Google Scholar 

  44. 44.

    Chapotin, S. M., Razanameharizaka, J. H. & Holbrook, N. M. Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season. New Phytol. 169, 549–559 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Trouet, V., Mukelabai, M., Verheyden, A. & Beeckman, H. Cambial growth season of brevi-deciduous Brachystegia spiciformis trees from South Central Africa restricted to less than four months. PLoS ONE 7, e47364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Elifuraha, E., Nöjd, P. & Mbwambo, L. Short term growth of Miombo tree species at Kitulangalo. Work. Pap. Finn. For. Res. Inst. 98, 37–45 (2008).

    Google Scholar 

  47. 47.

    Domec, J. C. et al. Hydraulic redistribution of soil water by roots affects whole‐stand evapotranspiration and net ecosystem carbon exchange. New Phytol. 187, 171–183 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Yu, K. & D’Odorico, P. Hydraulic lift as a determinant of tree–grass coexistence on savannas. New Phytol. 207, 1038–1051 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Huang, C.-W. et al. The effect of plant water storage on water fluxes within the coupled soil–plant system. New Phytol. 213, 1093–1106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kerr, Y. H. et al. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 50, 1384–1403 (2012).

    Article  Google Scholar 

  51. 51.

    Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).

    Article  Google Scholar 

  52. 52.

    Strassberg, G., Scanlon, B. R. & Chambers, D. Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the High Plains aquifer, central United States. Water Resour. Res. 45, W05410 (2009).

    Article  Google Scholar 

  53. 53.

    Reager, J. T. et al. A decade of sea level rise slowed by climate-driven hydrology. Science 351, 699–703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Sakumura, C., Bettadpur, S. & Bruinsma, S. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett. 41, 1389–1397 (2014).

    Article  Google Scholar 

  55. 55.

    Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 0081 (2017).

    Article  Google Scholar 

  56. 56.

    Brandt, M. et al. Woody plant cover estimation in drylands from Earth Observation based seasonal metrics. Remote Sens. Environ. 172, 28–38 (2016).

    Article  Google Scholar 

  57. 57.

    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne LIDAR. J. Geophys. Res. Biogeosci. 116, G04021 (2011).

    Article  Google Scholar 

  58. 58.

    Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    Article  Google Scholar 

  59. 59.

    Martens, B. et al. GLEAMv3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article  Google Scholar 

  60. 60.

    Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).

    Article  Google Scholar 

  61. 61.

    Garonna, I. et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob. Change Biol. 20, 3457–3470 (2014).

    Article  Google Scholar 

  62. 62.

    Parrens, M. et al. Global-scale surface roughness effects at L-band as estimated from SMOS observations. Remote Sens. Environ. 181, 122–136 (2016).

    Article  Google Scholar 

  63. 63.

    Fernandez-Moran, R. et al. A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm. Int. J. Appl. Earth Obs. Geoinf. 62, 27–38 (2017).

    Article  Google Scholar 

  64. 64.

    Vittucci, C., Ferrazzoli, P., Richaume, P. & Kerr, Y. Effective scattering albedo of forests retrieved by SMOS and a three-parameter algorithm. IEEE Geosci. Remote Sens. Lett. 14, 2260–2264 (2017).

    Article  Google Scholar 

  65. 65.

    Parrens, M. et al. Estimation of the L-band effective scattering albedo of tropical forests using SMOS observations. IEEE Geosci. Remote Sens. Lett. 14, 1223–1227 (2017).

    Article  Google Scholar 

  66. 66.

    Du, J., Kimball, J. S. & Jones, L. A. Passive microwave remote sensing of soil moisture based on dynamic vegetation scattering properties for AMSR-E. IEEE Trans. Geosci. Remote Sens. 54, 597–608 (2016).

    Article  Google Scholar 

  67. 67.

    Wigneron, J. P. et al. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 192, 238–262 (2017).

    Article  Google Scholar 

  68. 68.

    Holmes, T. R. H., Jackson, T. J., Reichle, R. H. & Basara, J. B. An assessment of surface soil temperature products from numerical weather prediction models using ground‐based measurements. Water Resour. Res. 48, W02531 (2012).

    Article  Google Scholar 

  69. 69.

    Albergel, C. et al. Soil temperature at ECMWF: an assessment using ground‐based observations. J. Geophys. Res. Atmos. 120, 1361–1373 (2015).

    Article  Google Scholar 

Download references


We thank E. Fluet-Chouinard, F. Aires and C. Prigent for providing the global inundation map. This work was funded by the CNES through the Science Terre Environment et Climat programme, European Space Agency, Support to Science Element programme and SMOS Expert Support Laboratory. F.T. and R.F. acknowledge funding from the Danish Council for Independent Research (grant ID: DFF–6111-00258). F.T. is also the recipient of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (project number 746347). P.C. and J.P. acknowledge funding from the European Research Council Synergy grant ERC-2013-SyG-610028 IMBALANCE-P. T.T. was funded by the Swedish National Space Board (Dnr: 95/16). P.C. acknowledges additional support from the ANR ICONV CLAND grant. J.C. has benefited from ‘Investissement d’Avenir’ grants managed by the French Agence Nationale de la Recherche (CEBA (ref. ANR-10-LABX-25-01) and TULIP (ref. ANR-10-LABX-0041)), as well as TOSCA funds from the CNES.

Author information




F.T., J.-P.W., M.B. and R.F. designed the study with inputs from P.C., J.C., J.P. and A.R. J.-P.W., Y.K., A.M., N.R.-F. and A.A.-Y. prepared the SMOS-IC data and performed the sensitivity analyses. C.C. and R.B.M. prepared the MODIS LAI data. F.T. performed the data analyses. The results were interpreted by J.-P.W., A.R., J.C., F.T., P.C., J.P., J.O., J.-C.D., X.T., N.R.-F., A.M., T.T., A.A.-Y. and R.F. F.T. drafted the manuscript with editing by P.C., J.P., J.O. and J.C., and contributions from all co-authors.

Corresponding authors

Correspondence to Feng Tian or Jean-Pierre Wigneron.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary figures and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Wigneron, JP., Ciais, P. et al. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nat Ecol Evol 2, 1428–1435 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing