Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Climate sensitive size-dependent survival in tropical trees

Abstract

Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four ‘survival modes’ that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the workflow for this analysis.
Fig. 2: Survival probability as a function of DBH for each of the four identified survival modes.
Fig. 3: Mean annual aboveground carbon loss to mortality.
Fig. 4: In general, traits do not map strongly onto the four survival modes.
Fig. 5: Average annual individual growth rate by survival mode.
Fig. 6: Observed versus predicted biomass.

Similar content being viewed by others

References

  1. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Wright, S. J. The carbon sink in intact tropical forests. Glob. Change Biol. 19, 337–339 (2013).

    Article  Google Scholar 

  4. Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

    Article  Google Scholar 

  6. Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. McMahon, S. M., Parker, G. G. & Miller, D. R. Evidence for a recent increase in forest growth. Proc. Natl Acad. Sci. USA 107, 3611–3615 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. van der Sande, M. T. et al. Abiotic and biotic drivers of biomass change in a Neotropical forest. J. Ecol. 105, 1223–1234 (2017).

    Article  CAS  Google Scholar 

  9. Johnson, M. O. et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob. Change Biol. 22, 3996–4013 (2016).

    Article  Google Scholar 

  10. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  11. Adler, P. B., Ellner, S. P. & Levine, J. M. Coexistence of perennial plants: an embarrassment of niches. Ecol. Lett. 13, 1019–1029 (2010).

    PubMed  Google Scholar 

  12. Purves, D. & Pacala, S. Predictive models of forest dynamics. Science 320, 1452–1453 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Coomes, D. A. & Allen, R. B. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 95, 27–40 (2007).

    Article  Google Scholar 

  14. Rees, M., Condit, R., Crawley, M., Pacala, S. & Tilman, D. Long-term studies of vegetation dynamics. Science 293, 650–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Cobb, R. C., Filipe, J. A. N., Meentemeyer, R. K., Gilligan, C. A. & Rizzo, D. M. Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests. J. Ecol. 100, 712–722 (2012).

    Article  Google Scholar 

  16. Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    Article  PubMed  Google Scholar 

  17. Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).

    Article  Google Scholar 

  18. McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).

    Article  PubMed  Google Scholar 

  19. Hennig, C. Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods. J. Multivar. Anal. 99, 1154–1176 (2008).

    Article  Google Scholar 

  20. McFadden, D. in Frontiers in Economics (ed. Zarembka, P.) 105–142 (Academic Press, New York, 1973).

  21. Vanclay, J. K. Mortality functions for North Queensland rain forests. J. Trop. For. Sci. 4, 15–36 (1991).

    Google Scholar 

  22. Rüger, N., Huth, A., Hubbell, S. P. & Condit, R. Response of recruitment to light availability across a tropical lowland rain forest community. J. Ecol. 97, 1360–1368 (2009).

    Article  Google Scholar 

  23. Eichhorn, M. P., Nilus, R., Compton, S. G., Hartley, S. E. & Burslem, D. F. R. P. Herbivory of tropical rain forest tree seedlings correlates with future mortality. Ecology 91, 1092–1101 (2010).

    Article  PubMed  Google Scholar 

  24. Bell, T., Freckleton, R. P. & Lewis, O. T. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9, 569–574 (2006).

    Article  PubMed  Google Scholar 

  25. Packer, A. & Clay, K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404, 278–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Chambers, J. Q., dos Santos, J., Ribeiro, R. J. & Higuchi, N. Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. For. Ecol. Manag. 152, 73–84 (2001).

    Article  Google Scholar 

  27. Silver, E. J., Fraver, S., D’Amato, A. W., Aakala, T. & Palik, B. J. Long-term mortality rates and spatial patterns in an old-growth Pinus resinosa forest. Can. J. For. Res. 43, 809–816 (2013).

    Article  Google Scholar 

  28. McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).

    Article  Google Scholar 

  29. Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Kraft, N. J. B., Metz, M. R., Condit, R. S. & Chave, J. The relationship between wood density and mortality in a global tropical forest data set. New Phytol. 188, 1124–1136 (2010).

    Article  PubMed  Google Scholar 

  31. Poorter, L. The relationships of wood-, gas- and water fractions of tree stems to performance and life history variation in tropical trees. Ann. Bot. 102, 367–375 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).

    Article  PubMed  Google Scholar 

  33. Poorter, H., Niinemets, Ü., Poorter, L., Wright, I J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009).

    Article  PubMed  Google Scholar 

  34. Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article  Google Scholar 

  35. Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kramer-Schadt, S., Revilla, E., Wiegand, T. & Grimm, V. Patterns for parameters in simulation models. Ecol. Model. 204, 553–556 (2007).

    Article  Google Scholar 

  37. Dietze, M. C. et al. A quantitative assessment of a terrestrial biosphere model’s data needs across North American biomes. J. Geophys. Res. Biogeosci. 119, 286–300 (2014).

    Article  Google Scholar 

  38. Fisher, R. A. et al. Vegetation demographics in Earth System Models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

    Article  Google Scholar 

  39. Condit, R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots (Springer Science & Business Media, New York, 1998).

  40. R Development Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

  41. Stan Development Team Stan: A C++ Library for Probability and Sampling v.2.10.0 (2015).

  42. Marod, D., Kutintara, U., Yarwudhi, C., Tanaka, H. & Nakashisuka, T. Structural dynamics of a natural mixed deciduous forest in western Thailand. J. Veg. Sci. 10, 777–786 (1999).

    Article  Google Scholar 

  43. Metcalf, C. J. E., Horvitz, C. C., Tuljapurkar, S. & Clark, D. A. A time to grow and a time to die: a new way to analyze the dynamics of size, light, age, and death of tropical trees. Ecology 90, 2766–2778 (2009).

    Article  PubMed  Google Scholar 

  44. Miura, M., Manabe, T., Nishimura, N. & Yamamoto, S. Forest canopy and community dynamics in a temperate old-growth evergreen broad-leaved forest, south-western Japan: a 7-year study of a 4-ha plot. J. Ecol. 89, 841–849 (2001).

    Article  Google Scholar 

  45. Needham, J., Merow, C., Chang-Yang, C. H., Caswell, H. & McMahon, S. M. Inferring forest fate from demographic data: from vital rates to population dynamic models. Proc. R. Soc. B 285, 2017–2050 (2018).

    Article  Google Scholar 

  46. Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  47. Husson, F., Josse, J. & Pages, J. Principal Component Methods-Hierarchical Clustering-Partitional Clustering: Why Would We Need to Choose for Visualizing Data Technical Report of the Applied Mathematics Department (Agrocampus Quest, Rennes, 2010).

  48. Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).

    Article  Google Scholar 

  49. Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Article  PubMed  Google Scholar 

  50. Swenson, N. G. et al. Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity. Ecology 93, 490–499 (2012).

    Article  PubMed  Google Scholar 

  51. Zanne, A. E. et al. Global Wood Density Database (Dyrad Digital Repository, 2009); https://doi.org/10.5061/dryad.234.

  52. Katabuchi, M., Kurokawa, H., Davies, S. J., Tan, S. & Nakashizuka, T. Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. J. Ecol. 100, 643–651 (2012).

    Article  Google Scholar 

  53. Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).

    Article  Google Scholar 

  54. Yee, T. W. The VGAM package for categorical data analysis. J. Stat. Softw. 32, 1–34 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the many people involved in establishing and maintaining all the plots utilized in these analyses. A detailed list of funding sources for each plot is available in the Supplementary Information. The development of this project benefited from ForestGEO workshops in 2015, 2016 and 2017 (NSF DEB-1046113 to S.J.D.). Contributions by C.X., J.Q.C., S.J.D. and N.M. were supported by the Next-Generation Ecosystem Experiments (NGEE-Tropics) project, funded by the US Department of Energy, Office of Biological and Environmental Research. S.M.M. was partially funded by NSF - EF1137366. D.J.J. was supported by Los Alamos National Laboratory (Director’s Post-doctoral Fellowship).

Author information

Authors and Affiliations

Authors

Contributions

D.J.J., J.N., C.X., N.M. and S.M.M. conceived and designed the analyses, D.J.J. and J.N. performed the analyses, D.J.J., C.X., S.J.D., N.M., J.N., S.M.M. wrote the initial draft. E.C.M. and C.X. provided FATES simulations. K.J.A.-T., S.B., C.H.C.-Y., J.Q.C., J.-M.C., G.B.C., R.C., S.C., C.F., F.I.-N., C.P.G., S.G., N.G., T.W.G., C.-F.H., S.H., A.R.K., M.K., D.K., C.M.L., S.L., E.C.M., M.M., N.G.M., P.S.O., R.O., L.S., N.G.S., I.F.S., S.T., D.W.T., J.T., M.N.U., M.U., R.V., S.Y. and J.K.Z. contributed data, provided site-specific information and helped revise the manuscript. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Daniel J. Johnson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, D.J., Needham, J., Xu, C. et al. Climate sensitive size-dependent survival in tropical trees. Nat Ecol Evol 2, 1436–1442 (2018). https://doi.org/10.1038/s41559-018-0626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0626-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing