Abstract

Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four ‘survival modes’ that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

  2. 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

  3. 3.

    Wright, S. J. The carbon sink in intact tropical forests. Glob. Change Biol. 19, 337–339 (2013).

  4. 4.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

  5. 5.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

  6. 6.

    Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

  7. 7.

    McMahon, S. M., Parker, G. G. & Miller, D. R. Evidence for a recent increase in forest growth. Proc. Natl Acad. Sci. USA 107, 3611–3615 (2010).

  8. 8.

    van der Sande, M. T. et al. Abiotic and biotic drivers of biomass change in a Neotropical forest. J. Ecol. 105, 1223–1234 (2017).

  9. 9.

    Johnson, M. O. et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob. Change Biol. 22, 3996–4013 (2016).

  10. 10.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

  11. 11.

    Adler, P. B., Ellner, S. P. & Levine, J. M. Coexistence of perennial plants: an embarrassment of niches. Ecol. Lett. 13, 1019–1029 (2010).

  12. 12.

    Purves, D. & Pacala, S. Predictive models of forest dynamics. Science 320, 1452–1453 (2008).

  13. 13.

    Coomes, D. A. & Allen, R. B. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 95, 27–40 (2007).

  14. 14.

    Rees, M., Condit, R., Crawley, M., Pacala, S. & Tilman, D. Long-term studies of vegetation dynamics. Science 293, 650–655 (2001).

  15. 15.

    Cobb, R. C., Filipe, J. A. N., Meentemeyer, R. K., Gilligan, C. A. & Rizzo, D. M. Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests. J. Ecol. 100, 712–722 (2012).

  16. 16.

    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

  17. 17.

    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).

  18. 18.

    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).

  19. 19.

    Hennig, C. Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods. J. Multivar. Anal. 99, 1154–1176 (2008).

  20. 20.

    McFadden, D. in Frontiers in Economics (ed. Zarembka, P.) 105–142 (Academic Press, New York, 1973).

  21. 21.

    Vanclay, J. K. Mortality functions for North Queensland rain forests. J. Trop. For. Sci. 4, 15–36 (1991).

  22. 22.

    Rüger, N., Huth, A., Hubbell, S. P. & Condit, R. Response of recruitment to light availability across a tropical lowland rain forest community. J. Ecol. 97, 1360–1368 (2009).

  23. 23.

    Eichhorn, M. P., Nilus, R., Compton, S. G., Hartley, S. E. & Burslem, D. F. R. P. Herbivory of tropical rain forest tree seedlings correlates with future mortality. Ecology 91, 1092–1101 (2010).

  24. 24.

    Bell, T., Freckleton, R. P. & Lewis, O. T. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9, 569–574 (2006).

  25. 25.

    Packer, A. & Clay, K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404, 278–281 (2000).

  26. 26.

    Chambers, J. Q., dos Santos, J., Ribeiro, R. J. & Higuchi, N. Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. For. Ecol. Manag. 152, 73–84 (2001).

  27. 27.

    Silver, E. J., Fraver, S., D’Amato, A. W., Aakala, T. & Palik, B. J. Long-term mortality rates and spatial patterns in an old-growth Pinus resinosa forest. Can. J. For. Res. 43, 809–816 (2013).

  28. 28.

    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).

  29. 29.

    Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958 (2018).

  30. 30.

    Kraft, N. J. B., Metz, M. R., Condit, R. S. & Chave, J. The relationship between wood density and mortality in a global tropical forest data set. New Phytol. 188, 1124–1136 (2010).

  31. 31.

    Poorter, L. The relationships of wood-, gas- and water fractions of tree stems to performance and life history variation in tropical trees. Ann. Bot. 102, 367–375 (2008).

  32. 32.

    Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).

  33. 33.

    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009).

  34. 34.

    Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

  35. 35.

    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

  36. 36.

    Kramer-Schadt, S., Revilla, E., Wiegand, T. & Grimm, V. Patterns for parameters in simulation models. Ecol. Model. 204, 553–556 (2007).

  37. 37.

    Dietze, M. C. et al. A quantitative assessment of a terrestrial biosphere model’s data needs across North American biomes. J. Geophys. Res. Biogeosci. 119, 286–300 (2014).

  38. 38.

    Fisher, R. A. et al. Vegetation demographics in Earth System Models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

  39. 39.

    Condit, R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots (Springer Science & Business Media, New York, 1998).

  40. 40.

    R Development Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

  41. 41.

    Stan Development Team Stan: A C++ Library for Probability and Sampling v.2.10.0 (2015).

  42. 42.

    Marod, D., Kutintara, U., Yarwudhi, C., Tanaka, H. & Nakashisuka, T. Structural dynamics of a natural mixed deciduous forest in western Thailand. J. Veg. Sci. 10, 777–786 (1999).

  43. 43.

    Metcalf, C. J. E., Horvitz, C. C., Tuljapurkar, S. & Clark, D. A. A time to grow and a time to die: a new way to analyze the dynamics of size, light, age, and death of tropical trees. Ecology 90, 2766–2778 (2009).

  44. 44.

    Miura, M., Manabe, T., Nishimura, N. & Yamamoto, S. Forest canopy and community dynamics in a temperate old-growth evergreen broad-leaved forest, south-western Japan: a 7-year study of a 4-ha plot. J. Ecol. 89, 841–849 (2001).

  45. 45.

    Needham, J., Merow, C., Chang-Yang, C. H., Caswell, H. & McMahon, S. M. Inferring forest fate from demographic data: from vital rates to population dynamic models. Proc. R. Soc. B 285, 2017–2050 (2018).

  46. 46.

    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

  47. 47.

    Husson, F., Josse, J. & Pages, J. Principal Component Methods-Hierarchical Clustering-Partitional Clustering: Why Would We Need to Choose for Visualizing Data Technical Report of the Applied Mathematics Department (Agrocampus Quest, Rennes, 2010).

  48. 48.

    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).

  49. 49.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

  50. 50.

    Swenson, N. G. et al. Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity. Ecology 93, 490–499 (2012).

  51. 51.

    Zanne, A. E. et al. Global Wood Density Database (Dyrad Digital Repository, 2009); https://doi.org/10.5061/dryad.234.

  52. 52.

    Katabuchi, M., Kurokawa, H., Davies, S. J., Tan, S. & Nakashizuka, T. Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. J. Ecol. 100, 643–651 (2012).

  53. 53.

    Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).

  54. 54.

    Yee, T. W. The VGAM package for categorical data analysis. J. Stat. Softw. 32, 1–34 (2010).

Download references

Acknowledgements

The authors thank the many people involved in establishing and maintaining all the plots utilized in these analyses. A detailed list of funding sources for each plot is available in the Supplementary Information. The development of this project benefited from ForestGEO workshops in 2015, 2016 and 2017 (NSF DEB-1046113 to S.J.D.). Contributions by C.X., J.Q.C., S.J.D. and N.M. were supported by the Next-Generation Ecosystem Experiments (NGEE-Tropics) project, funded by the US Department of Energy, Office of Biological and Environmental Research. S.M.M. was partially funded by NSF - EF1137366. D.J.J. was supported by Los Alamos National Laboratory (Director’s Post-doctoral Fellowship).

Author information

Affiliations

  1. Earth and Environmental Science, Los Alamos National Laboratory, Los Alamos, NM, USA

    • Daniel J. Johnson
    •  & Chonggang Xu
  2. School of Forest Resources and Conservation, Gainesville, FL, USA

    • Daniel J. Johnson
  3. Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, MD, USA

    • Jessica Needham
    •  & Sean M. McMahon
  4. Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA

    • Elias C. Massoud
  5. Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA

    • Stuart J. Davies
    •  & David Kenfack
  6. Forest Global Earth Observatory, Smithsonian Conservation Biology Institute, Front Royal, VA, USA

    • Kristina J. Anderson-Teixeira
  7. Research Office, Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand

    • Sarayudh Bunyavejchewin
  8. Climate and Ecosystems Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Jeffery Q. Chambers
  9. Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan

    • Chia-Hao Chang-Yang
  10. Department of Life Science, Tunghai University, Taichung, Taiwan

    • Jyh-Min Chiang
  11. Department of Botany and Plant Physiology, University of Buea, Buea, Cameroon

    • George B. Chuyong
  12. Field Museum, Chicago, IL, USA

    • Richard Condit
  13. Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, HI, USA

    • Susan Cordell
    •  & Christian P. Giardina
  14. Forest Research Institute Malaysia, Kepong, Selangor Darul Ehsan, Malaysia

    • Christine Fletcher
    • , Abdul Rahman Kassim
    •  & Musalmah Nasardin
  15. Department of Geography, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • Thomas W. Giambelluca
  16. Department of Botany, University of Peradeniya, Peradeniya, Sri Lanka

    • Nimal Gunatilleke
    •  & Savitri Gunatilleke
  17. Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan

    • Chang-Fu Hsieh
  18. Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama

    • Stephen Hubbell
  19. Department of Natural Resources and Environmental Management, University of Hawaii at Manoa, Honolulu, HI, USA

    • Faith Inman-Narahari
    •  & Creighton M. Litton
  20. Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA

    • Masatoshi Katabuchi
  21. Nanyang Technological University, Singapore, Singapore

    • Shawn Lum
  22. Sarawak Forestry Department, Kuching, Sarawak, Malaysia

    • Mohizah Mohamad
    •  & Sylvester Tan
  23. Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines

    • Perry S. Ong
  24. Department of Biology, University of Hawaii, Hilo, HI, USA

    • Rebecca Ostertag
  25. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA

    • Lawren Sack
  26. Department of Biology, University of Maryland, Baltimore, MD, USA

    • Nathan G. Swenson
    •  & Maria Natalia Umaña
  27. National Dong Hwa University, Hualian, Taiwan

    • I Fang Sun
  28. School of Biological Sciences, Washington State University, Vancouver, WA, USA

    • Duncan W. Thomas
  29. Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, UK

    • Jill Thompson
  30. Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY, USA

    • Maria Uriarte
  31. Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador

    • Renato Valencia
  32. Far Eastern University, Manila, Philippines

    • Sandra Yap
  33. Institute for Tropical Ecosystem Studies, College of Natural Sciences, University of Puerto Rico, Río Piedras, Puerto Rico

    • Jess Zimmerman
  34. Pacific Northwest National Laboratory, Richland, WA, USA

    • Nate G. McDowell

Authors

  1. Search for Daniel J. Johnson in:

  2. Search for Jessica Needham in:

  3. Search for Chonggang Xu in:

  4. Search for Elias C. Massoud in:

  5. Search for Stuart J. Davies in:

  6. Search for Kristina J. Anderson-Teixeira in:

  7. Search for Sarayudh Bunyavejchewin in:

  8. Search for Jeffery Q. Chambers in:

  9. Search for Chia-Hao Chang-Yang in:

  10. Search for Jyh-Min Chiang in:

  11. Search for George B. Chuyong in:

  12. Search for Richard Condit in:

  13. Search for Susan Cordell in:

  14. Search for Christine Fletcher in:

  15. Search for Christian P. Giardina in:

  16. Search for Thomas W. Giambelluca in:

  17. Search for Nimal Gunatilleke in:

  18. Search for Savitri Gunatilleke in:

  19. Search for Chang-Fu Hsieh in:

  20. Search for Stephen Hubbell in:

  21. Search for Faith Inman-Narahari in:

  22. Search for Abdul Rahman Kassim in:

  23. Search for Masatoshi Katabuchi in:

  24. Search for David Kenfack in:

  25. Search for Creighton M. Litton in:

  26. Search for Shawn Lum in:

  27. Search for Mohizah Mohamad in:

  28. Search for Musalmah Nasardin in:

  29. Search for Perry S. Ong in:

  30. Search for Rebecca Ostertag in:

  31. Search for Lawren Sack in:

  32. Search for Nathan G. Swenson in:

  33. Search for I Fang Sun in:

  34. Search for Sylvester Tan in:

  35. Search for Duncan W. Thomas in:

  36. Search for Jill Thompson in:

  37. Search for Maria Natalia Umaña in:

  38. Search for Maria Uriarte in:

  39. Search for Renato Valencia in:

  40. Search for Sandra Yap in:

  41. Search for Jess Zimmerman in:

  42. Search for Nate G. McDowell in:

  43. Search for Sean M. McMahon in:

Contributions

D.J.J., J.N., C.X., N.M. and S.M.M. conceived and designed the analyses, D.J.J. and J.N. performed the analyses, D.J.J., C.X., S.J.D., N.M., J.N., S.M.M. wrote the initial draft. E.C.M. and C.X. provided FATES simulations. K.J.A.-T., S.B., C.H.C.-Y., J.Q.C., J.-M.C., G.B.C., R.C., S.C., C.F., F.I.-N., C.P.G., S.G., N.G., T.W.G., C.-F.H., S.H., A.R.K., M.K., D.K., C.M.L., S.L., E.C.M., M.M., N.G.M., P.S.O., R.O., L.S., N.G.S., I.F.S., S.T., D.W.T., J.T., M.N.U., M.U., R.V., S.Y. and J.K.Z. contributed data, provided site-specific information and helped revise the manuscript. All authors contributed to the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Daniel J. Johnson.

Supplementary information

  1. Supplementary Information

    Supplementary figures and tables

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0626-z