Brief Communication | Published:

Evolution of facilitation requires diverse communities

Nature Ecology & Evolutionvolume 2pages13811385 (2018) | Download Citation

Abstract

Diverse experimental plant communities are more productive than monocultures. The increase of this biodiversity effect over time has been attributed to evolutionary selection for complementarity in mixtures. Here we show that evolutionary selection for enhanced net facilitative plant interactions occurred only in mixtures, while evolutionary selection for reduced net competition occurred in mixtures with mixture coexistence history and monocultures with monoculture coexistence history. Widespread declines in natural and agricultural biodiversity could therefore compromise potential evolution of facilitative interactions, that is, cornerstone processes in nature conservation and the development of sustainable agriculture.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Tilman, D. et al. Science 294, 843–845 (2001).

  2. 2.

    Loreau, M. & Hector, A. Nature 412, 72–76 (2001).

  3. 3.

    van Ruijven, J. & Berendse, F. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).

  4. 4.

    Cardinale, B. J. et al. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

  5. 5.

    Reich, P. B. et al. Science 336, 589–592 (2012).

  6. 6.

    Zuppinger-Dingley, D. et al. Nature 515, 108–111 (2014).

  7. 7.

    van Moorsel, S. J. et al. Ecol. Lett. 21, 128–137 (2017).

  8. 8.

    Brooker, R. W., Karley, A. J., Newton, A. C., Pakeman, R. J. & Schöb, C. Funct. Ecol. 30, 98–107 (2016).

  9. 9.

    Li, L., Tilman, D., Lambers, H. & Zhang, F.-S. New Phytol. 203, 63–69 (2014).

  10. 10.

    Isbell, F. et al. J. Ecol. 105, 871–879 (2017).

  11. 11.

    Loreau, M. Phil. Trans. R. Soc. B 365, 49–60 (2010).

  12. 12.

    Luescher, A. & Jacquard, P. Trends Ecol. Evol. 6, 355–358 (1991).

  13. 13.

    Turkington, R. Euphytica 92, 105–119 (1996).

  14. 14.

    Evans, D. R., Hill, J., Williams, T. A. & Rhodes, I. Oecologia 66, 536–539 (1985).

  15. 15.

    Chesson, P. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

  16. 16.

    Aarssen, L. W. Am. Nat. 122, 707–731 (1983).

  17. 17.

    Bronstein, J. L. J. Ecol. 97, 1160–1170 (2009).

  18. 18.

    Lawrence, D. et al. PLoS Biol. 10, e1001330 (2012).

  19. 19.

    Díaz-Sierra, R., Verwijmeren, M., Rietkerk, M., de Dios, V. R. & Baudena, M. Methods Ecol. Evol. 8, 580–591 (2017).

  20. 20.

    Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. Trends Ecol. Evol. 32, 383–390 (2017).

  21. 21.

    Kleynhans, E. J., Otto, S. P., Reich, P. B. & Vellend, M. Nat. Commun. 7, 12358 (2016).

  22. 22.

    Thorpe, A. S., Aschehoug, E. T., Atwater, D. Z. & Callaway, R. M. J. Ecol. 99, 729–740 (2011).

  23. 23.

    Fiegna, F., Moreno-Letelier, A., Bell, T. & Barraclough, T. G. ISME J. 9, 1235–1245 (2015).

  24. 24.

    van Moorsel, S. J. et al. Preprint at https://www.biorxiv.org/content/early/2018/02/08/262303 (2018).

  25. 25.

    Pereira, H. M. et al. Science 330, 1496–1501 (2010).

  26. 26.

    Colin, K. et al. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

  27. 27.

    Esquinas-Alcázar, J. Nat. Rev. Genet. 6, 946–953 (2005).

  28. 28.

    Verdú, M. & Valiente-Banuet, A. Am. Nat. 172, 751–760 (2008).

Download references

Acknowledgements

This study was financially supported by the Swiss National Science Foundation (PP00P3_170645 to C.S. and 130720 to B. Schmid) and the University of Zurich’s University Research Priority Programme on Global Change and Biodiversity. R.W.B. was supported by the Rural and Environment Science and Analytical Services Division of the Scottish government through the Strategic Research Programme, 2016–2021. Thanks to D. Trujillo Villegas, L. Oesch, T. Zwimpfer, M. Furler, R. Husi, the gardeners of the Jena Experiment and student helpers for technical assistance.

Author information

Affiliations

  1. Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland

    • Christian Schöb
  2. The James Hutton Institute, Craigiebuckler, Aberdeen, UK

    • Rob W. Brooker
  3. URPP Global Change and Biodiversity, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland

    • Debra Zuppinger-Dingley

Authors

  1. Search for Christian Schöb in:

  2. Search for Rob W. Brooker in:

  3. Search for Debra Zuppinger-Dingley in:

Contributions

C.S. initiated the idea and conducted data analyses. D.Z.-D. designed and carried out the experiment and collected the data. C.S. prepared the manuscript with input from the other authors. All authors discussed the idea and the results before the preparation of the manuscript and conducted the revisions.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Christian Schöb.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–4, Supplementary Figures 1–2

  2. Reporting Summary

  3. Supplementary Data

    Complete database

  4. Supplementary Code

    Complete R-code to run all the calculations, statistical analyses and draw the figures

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0623-2