Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene exchange drives the ecological success of a multi-host bacterial pathogen

Abstract

The capacity for some pathogens to jump into different host-species populations is a major threat to public health and food security. Staphylococcus aureus is a multi-host bacterial pathogen responsible for important human and livestock diseases. Here, using a population-genomic approach, we identify humans as a major hub for ancient and recent S. aureus host-switching events linked to the emergence of endemic livestock strains, and cows as the main animal reservoir for the emergence of human epidemic clones. Such host-species transitions are associated with horizontal acquisition of genetic elements from host-specific gene pools conferring traits required for survival in the new host-niche. Importantly, genes associated with antimicrobial resistance are unevenly distributed among human and animal hosts, reflecting distinct antibiotic usage practices in medicine and agriculture. In addition to gene acquisition, genetic diversification has occurred in pathways associated with nutrient acquisition, implying metabolic remodelling after a host switch in response to distinct nutrient availability. For example, S. aureus from dairy cattle exhibit enhanced utilization of lactose—a major source of carbohydrate in bovine milk. Overall, our findings highlight the influence of human activities on the multi-host ecology of a major bacterial pathogen, underpinned by horizontal gene transfer and core genome diversification.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: S. aureus phylogeny according to host-species origin.
Fig. 2: S. aureus has undergone extensive ancient and recent host-switching events, with humans acting as a major hub.
Fig. 3: Network analysis of the S. aureus accessory genome indicates clustering according to host-species group.
Fig. 4: Identification of horizontally acquired genetic elements correlated with host adaptation.
Fig. 5: Summary of biological pathways under positive selection in different host species, and evidence for phenotypic adaptation.
Fig. 6: Resistance to antimicrobials is non-randomly associated with host species.

References

  1. Morand, S., McIntyre, K. M. & Baylis, M. Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters. Infect. Genet. Evol. 24, 76–81 (2014).

    Article  PubMed  Google Scholar 

  2. Woolhouse, M. E., Haydon, D. T. & Antia, R. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238–244 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peton, V. & Le Loir, Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 21, 602–615 (2014).

    Article  PubMed  Google Scholar 

  6. Bradley, A. J., Leach, K. A., Breen, J. E., Green, L. E. & Green, M. J. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet. Rec. 160, 253–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. McNamee, P. T. & Smyth, J. A. Bacterial chondronecrosis with osteomyelitis (‘femoral head necrosis’) of broiler chickens: a review. Avian Pathol. 29, 477–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Van Duijkeren, E. et al. Methicillin-resistant Staphylococcus aureus in pigs with exudative epidermitis. Emerg. Infect. Dis. 13, 1408–1410 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Viana, D. et al. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat. Genet. 47, 361–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feil, E. J. et al. How clonal is Staphylococcus aureus? J. Bacteriol. 185, 3307–3316 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shepheard, M. A. et al. Historical zoonoses and other changes in host tropism of Staphylococcus aureus, identified by phylogenetic analysis of a population dataset. PLoS ONE 8, e62369 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weinert, L. A. et al. Molecular dating of human-to-bovid host jumps by Staphylococcus aureus reveals an association with the spread of domestication. Biol. Lett. 8, 829–832 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Price, L. B. et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3, e00305-11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fitzgerald, J. R. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 20, 192–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Holden, M. T. et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 23, 653–664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McAdam, P. R. et al. Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 109, 9107–9112 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Spoor, L. E. et al. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. mBio 4, e00356-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lowder, B. V. et al. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl Acad. Sci. USA 106, 19545–19550 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Viana, D. et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 77, 1583–1594 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Guinane, C. M. et al. Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol. Evol. 2, 454–466 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koymans, K. J., Vrieling, M., Gorham, R. D.Jr & van Strijp, J. A. Staphylococcal immune evasion proteins: structure, function, and host adaptation. Curr. Top. Microbiol. Immunol. 409, 441–489 (2017).

    CAS  PubMed  Google Scholar 

  22. Koop, G. et al. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci. Rep. 7, 40660 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loffler, B. et al. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 6, e1000715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vrieling, M. et al. LukMF’ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis. Sci. Rep. 6, 37759 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Jong, N. W. M. et al. Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. J. Biol. Chem. 293, 4468–4477 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson, G. J. et al. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog. 7, e1002271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tong, S. Y. et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 65, 15–22 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thaipadungpanit, J. et al. Clinical and molecular epidemiology of Staphylococcus argenteus infections in Thailand. J. Clin. Microbiol. 53, 1005–1008 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aanensen, D. M. et al. Whole-genome sequencing for routine pathogen surveillance in public health: a population snapshot of invasive Staphylococcus aureus in Europe. mBio 7, e00444-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 56, 391–412 (2008).

    Article  PubMed  Google Scholar 

  31. De Maio, N., Wu, C. H., O’Reilly, K. M. & Wilson, D. New routes to phylogeography: a Bayesian structured coalescent approximation. PLoS Genet. 11, e1005421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheppard, S. K. et al. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol. Ecol. 23, 2442–2451 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Deringer, J. R., Ely, R. J., Monday, S. R., Stauffacher, C. V. & Bohach, G. A. Vβ-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Infect. Immun. 65, 4048–4054 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Howden, B. P., Peleg, A. Y. & Stinear, T. P. The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infect. Genet. Evol. 21, 575–582 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. UK One Health Report: Antibiotics Use in Humans and Animals (Public Health England & Veterinary Medicines Directorate, 2015).

  36. Ward, M. J. et al. Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus CC398. Appl. Environ. Microbiol. 80, 7275–7282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murray, S. et al. Recombination-mediated host adaptation by avian Staphylococcus aureus. Genome Biol. Evol. 9, 830–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ward, M. J. et al. Identification of source and sink populations for the emergence and global spread of the East-Asia clone of community-associated MRSA. Genome Biol. 17, 160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Argimon, S. et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2, e000093 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Zerbino, D. R. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinformatics 11, 11.5 (2010).

    Google Scholar 

  41. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Nadalin, F., Vezzi, F. & Policriti, A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinform. 13, S8 (2012).

    Article  Google Scholar 

  44. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 9, 539 (2008).

    Article  CAS  Google Scholar 

  48. Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, e6 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2012).

    Article  PubMed  Google Scholar 

  50. Aibar, S., Fontanillo, C., Droste, C. & De Las Rivas, J. Functional gene networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering. Bioinformatics 31, 1686–1688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article  CAS  Google Scholar 

  53. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Contreras-Moreira, B. & Vinuesa, P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696–7701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Wright, D. W., Angus, T., Enright, A. J. & Freeman, T. C. Visualisation of BioPAX networks using BioLayout Express3D. F1000Res 3, 246 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Paradis, E. Analysis of diversification: combining phylogenetic and taxonomic data. Proc. Biol. Sci. 270, 2499–2505 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  59. David, S. et al. Evaluation of an optimal epidemiological typing scheme for Legionella pneumophila with whole-genome sequence data using validation guidelines. J. Clin. Microbiol. 54, 2135–2148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barker, D., Meade, A. & Pagel, M. Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23, 14–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. System. Biol. https://doi.org/10.1093/sysbio/syy032 (2018).

  62. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bruen, T. & Bruen, T. PhiPack: PHI Test and Other Tests of Recombination (McGill University, Montreal, 2005).

  65. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Maere, S., Heymans, K. & Kuiper, M. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of Gene Ontology terms. PLoS ONE 6, e21800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a project grant (BB/I013873/1) and institute strategic grant funding ISP2: BBS/E/D/20002173 from the Biotechnology and Biological Sciences Research Council (UK) to J.R.F., Medical Research Council (UK) grant MRNO2995X/1 to J.R.F. and Wellcome Trust collaborative award 201531/Z/16/Z to J.R.F. S.Y.C.T. is an Australian National Health and Medical Research Council Career Development Fellow (number 1065736). L.A.W. is supported by a Dorothy Hodgkin Fellowship funded by the Royal Society (grant number DH140195) and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and Royal Society (grant number 109385/Z/15/Z). S.L. is supported by a Chancellor’s Fellowship from the University of Edinburgh. M.T.G.H. was supported by the Scottish Infection Research Network and Chief Scientist Office through Scottish Healthcare Associated Infection Prevention Institute consortium funding (CSO reference: SIRN10). E.M.H. and S.J.P. were funded by The Health Innovation Challenge Fund (WT098600, HICF-T5-342), a parallel funding partnership between the Department of Health and Wellcome Trust, the UKCRC Translational Infection Research Initiative, and the Medical Research Council (grant number G1000803). S.J.P. is a National Institute for Health Research senior investigator. P.A.H. is supported by Natural Environment Research Council grant NE/M001415/1. We thank B. Blane, N. Brown and E. Torok for their role in the original study isolating and sequencing S. aureus from patients at the Cambridge University Hospitals NHS Foundation Trust, from which 76 genomes were downloaded from the ENA and used in this study. We also thank Edinburgh Genomics for sequencing, and all those who made isolates available for the study, including the Zoological Society London, G. Foster, H. Hasman, S. Monecke, E. Smith, D. Smyth and H. Jorgensen.

Author information

Authors and Affiliations

Authors

Contributions

J.R.F., S.J.P., J.P., M.H., E.M.H., L.A.W. and M.T.G.H. conceived and designed the study. E.J.R., R.B., E.M.H., L.A.W., S.L., M.V. and K.R. carried out the experiments. E.J.R., R.B., E.M.H., L.A.W., S.L., G.K.P., D.M.A., M.T.G.H., E.J.F., J.C., M.V., P.A.H., K.R. and J.R.F. analysed the data. S.Y.C.T., A.S. and W.v.W. provided isolates. E.J.R., R.B., E.M.H., S.L. and J.R.F. wrote the manuscript. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to J. Ross Fitzgerald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures 1–19; Supplementary Tables 1–12; Supplementary Notes

Reporting Summary

Supplementary Table 1

Metadata for all S. aureus isolates examined in the current study

Supplementary Table 5

Number of host jumps and transition rates between host-species groups and confidence intervals for all approaches used

Supplementary Table 6

Accessory genes enriched in isolates according to host-species or gain/loss of genes correlated with host-switching events

Supplementary Table 8

Functional groups of pseudogenes enriched in S. aureus by host-species

Supplementary Table 11

Functional categories (GO terms) of genes under positive selection in different host species

Supplementary Table 12

Distribution of antimicrobial resistance determinants according to host-species group

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Richardson, E.J., Bacigalupe, R., Harrison, E.M. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat Ecol Evol 2, 1468–1478 (2018). https://doi.org/10.1038/s41559-018-0617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0617-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing