Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

CO2 emissions boost the benefits of crop production by farming damselfish

Abstract

Farming is a technique employed by both humans and animals to enhance crop yields, allowing their populations to increase beyond the natural carrying capacity of the environment. Using volcanic CO2 vents, we investigate how a species of herbivorous fish (the black scalyfin Parma alboscapularis) may use increasing anthropogenic CO2 emissions to enhance its crop yields. We found that these farming fish can take advantage of this resource enrichment, to grow crops within smaller territories and increase the capacity of the environment to support more densely packed fish populations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of elevated CO2 on farming damselfish.
Fig. 2: Influence of farming versus CO2 enrichment on crop biomass and productivity.

Similar content being viewed by others

References

  1. Jones, C. G., Lawton, J. H. & Shachak, M. Oikos 69, 373–386 (1994).

    Article  Google Scholar 

  2. Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Funct. Ecol. 30, 70–78 (2016).

    Article  Google Scholar 

  3. Wernberg, T. et al. Science 353, 169–172 (2016).

    Article  CAS  Google Scholar 

  4. Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Russell, B. D. & Connell, S. D. Curr. Biol. 27, 2177–2184 (2017).

    Article  CAS  Google Scholar 

  5. Walther, G. R. et al. Nature 416, 389–395 (2002).

    Article  CAS  Google Scholar 

  6. Ghedini, G. & Connell, S. D. Ecology 97, 2671–2679 (2016).

    Article  Google Scholar 

  7. Klumpp, D., McKinnon, D. & Daniel, P. Mar. Ecol. Prog. Ser. 40, 41–51 (1987).

    Article  Google Scholar 

  8. Hata, H. & Kato, M. Mar. Ecol. Prog. Ser. 237, 227–231 (2002).

    Article  Google Scholar 

  9. Brawley, S. H. & Adey, W. H. Environ. Biol. Fishes 2, 45–51 (1977).

    Article  Google Scholar 

  10. Plagányi, E. & Branch, G. Mar. Ecol. Prog. Ser. 194, 113–122 (2000).

    Article  Google Scholar 

  11. Connell, S. D. & Russell, B. D. Proc. R. Soc. B 277, 1409–1415 (2010).

    Article  Google Scholar 

  12. Goldenberg, S. U., Nagelkerken, I., Ferreira, C. M., Ullah, H. & Connell, S. D. Glob. Change Biol. 23, 4177–4184 (2017).

    Article  Google Scholar 

  13. Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Nat. Clim. Change 6, 89–93 (2016).

    Article  CAS  Google Scholar 

  14. Connell, S. D. et al. Curr. Biol. 27, R95–R96 (2017).

    Article  CAS  Google Scholar 

  15. Dill, L. M. Can. J. Fish. Aquat. Sci. 40, 398–408 (1983).

    Article  Google Scholar 

  16. Smith, J. M. Models in Ecology (Cambridge Univ. Press, London, 1974).

  17. Thresher, R. E. Reef Fish: Behavior and Ecology on the Reef and in the Aquarium (John Bartholomew and Son, Edinburgh, 1980).

  18. Saunders, B. J., Kendrick, G. A. & Harvey, E. S. J. Exp. Mar. Biol. Ecol. 472, 107–118 (2015).

    Article  Google Scholar 

  19. Ceccarelli, D. M. Coral Reefs 26, 853–866 (2007).

    Article  Google Scholar 

  20. Saunders, B., Harvey, E. & Kendrick, G. Mar. Ecol. Prog. Ser. 517, 193–208 (2014).

    Article  Google Scholar 

  21. Ceccarelli, D. M., Jones, G. & McCook, L. J. in Oceanography and Marine Biology: An Annual Review (eds Gibson, R. N., Barnes, M. & Atkinson, R. J. A.) 283–290 (Taylor & Francis, London, 2001).

  22. Precht, W. F., Aronson, R. B., Moody, R. M. & Kaufman, L. PLoS ONE 5, e10835 (2010).

    Article  Google Scholar 

  23. Schopmeyer, S. A. & Lirman, D. PLoS ONE 10, e0141302 (2015).

    Article  Google Scholar 

  24. Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Ecol. Lett. 18, 714–723 (2015).

    Article  Google Scholar 

  25. Folgarait, P. J. Biodivers. Conserv. 7, 1221–1244 (1998).

    Article  Google Scholar 

  26. Connell, S. D. et al. Ecology 88, 1005–1010 (2018).

    Article  Google Scholar 

  27. Shaw, E. C., Munday, P. L. & McNeil, B. I. Geophys. Res. Lett. 40, 4685–4688 (2013).

    Article  CAS  Google Scholar 

  28. Brinkman, T. J. & Smith, A. M. Mar. Freshw. Res. 66, 360–370 (2015).

    Article  Google Scholar 

  29. Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to best practices for ocean CO 2 measurements (North Pacific Marine Science Organization, 2007).

  30. Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Limnol. Oceanogr. 18, 897–907 (1973).

    Article  CAS  Google Scholar 

  31. Dickson, A. G. & Millero, F. J. Deep Sea Res. A 34, 1733–1743 (1987).

    Article  CAS  Google Scholar 

  32. Pearson, P. N. & Palmer, M. R. Nature 406, 695–699 (2000).

    Article  CAS  Google Scholar 

  33. Littler, M. M. Aquat. Bot. 7, 21–34 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experiments were performed under animal ethics approvals S-2015-222 and S-2015-019 (Australia), and approved protocol 977 (New Zealand). Financial support was provided by an Australian Research Council Future Fellowship to I.N. (grant FT120100183). S.D.C. was supported by a Future Fellowship (grant FT0991953) and an ARC Discovery grant (grant DP150104263). C.M.F. was supported by a Science without Borders PhD scholarship through CAPES Brazil (scholarship 13058134). We also thank the Silverado and Tracker II crew for their help during the field work.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the experiment. C.M.F. built, maintained and performed the experiment, and analysed the data. C.M.F., I.N. and S.D.C. wrote the paper with contributions from S.U.G.

Corresponding author

Correspondence to Ivan Nagelkerken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary tables and figures

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, C.M., Nagelkerken, I., Goldenberg, S.U. et al. CO2 emissions boost the benefits of crop production by farming damselfish. Nat Ecol Evol 2, 1223–1226 (2018). https://doi.org/10.1038/s41559-018-0607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0607-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing