Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coexistence of many species in random ecosystems

Abstract

Rich ecosystems harbour thousands of species interacting in tangled networks encompassing predation, mutualism and competition. Such widespread biodiversity is puzzling, because in ecological models it is exceedingly improbable for large communities to stably coexist. One aspect rarely considered in these models, however, is that coexisting species in natural communities are a selected portion of a much larger pool, which has been pruned by population dynamics. Here we compute the distribution of the number of species that can coexist when we start from a pool of species interacting randomly, and show that even in this case we can observe rich, stable communities. Interestingly, our results show that, once stability conditions are met, network structure has very little influence on the level of biodiversity attained. Our results identify the main drivers responsible for widespread coexistence in natural communities, providing a baseline for determining which structural aspects of empirical communities promote or hinder coexistence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Number of coexisting species when interactions and intrinsic growth rates are randomly sampled from the standard normal distribution.
Fig. 2: Number of coexisting species for competitive interactions.
Fig. 3: Effect of network structure on coexistence for the case of nonzero means.

References

  1. 1.

    Lotka, A. J. Elements of Physical Biology (Williams & Wilkins, Baltimore, MD, 1925).

    Google Scholar 

  2. 2.

    Volterra, V. Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926).

    Article  Google Scholar 

  3. 3.

    Kingsland, S. Alfred J. Lotka and the origins of theoretical population ecology. Proc. Natl Acad. Sci. USA 112, 9493–9495 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Pascual, M. & Dunne, J. A. Ecological Networks: Linking Structure to Dynamics in Food Webs (Oxford Univ. Press, Oxford, 2006).

  5. 5.

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    CAS  Article  Google Scholar 

  6. 6.

    Goh, B. S. Global stability in many-species systems. Am. Nat. 111, 135–143 (1977).

    Article  Google Scholar 

  7. 7.

    Sigmund, K. Darwin’s “circles of complexity”: assembling ecological communities. Complexity 1, 40–44 (1995).

    Article  Google Scholar 

  8. 8.

    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).

    Article  Google Scholar 

  9. 9.

    Grilli, J. et al. Feasibility and coexistence of large ecological communities. Nat. Commun. 8, 14389 (2017).

    Article  Google Scholar 

  10. 10.

    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Roberts, A. The stability of a feasible random ecosystem. Nature 251, 607–608 (1974).

    Article  Google Scholar 

  13. 13.

    Goh, B. S. & Jennings, L. S. Feasibility and stability in randomly assembled Lotka–Volterra models. Ecol. Modell. 3, 63–71 (1977).

    Article  Google Scholar 

  14. 14.

    Drake, J. A. The mechanics of community assembly and succession. J. Theor. Biol. 147, 213–233 (1990).

    Article  Google Scholar 

  15. 15.

    Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).

    Article  Google Scholar 

  16. 16.

    Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    Williams, R. J. Effects of network and dynamical model structure on species persistence in large model food webs. Theor. Ecol. 1, 141–151 (2008).

    Article  Google Scholar 

  18. 18.

    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Bunin, G. Ecological communities with Lotka–Volterra dynamics. Phys. Rev. E 95, 042414 (2017).

    Article  Google Scholar 

  21. 21.

    Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Generic assembly patterns in complex ecological communities. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Yodzis, P. The stability of real ecosystems. Nature 289, 674–676 (1981).

    Article  Google Scholar 

  23. 23.

    Allesina, S. et al. Predicting the stability of large structured food webs. Nat. Commun. 6, 7842 (2015).

  24. 24.

    Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).

  25. 25.

    Barabás, G., J. Michalska-Smith, M. & Allesina, S. The effect of intra-and interspecific competition on coexistence in multispecies communities. Am. Nat. 188, E1–E12 (2016).

    Article  Google Scholar 

  26. 26.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).

    Article  Google Scholar 

  28. 28.

    Stone, L. The Google matrix controls the stability of structured ecological and biological networks. Nat. Commun. 7, 12857 (2016).

  29. 29.

    Morrison, K. E. From bocce to positivity: some probabilistic linear algebra. Math. Mag. 86, 110–119 (2013).

    Article  Google Scholar 

  30. 30.

    Johnson, C. R. Positive definite matrices. Am. Math. Mon. 77, 259–264 (1970).

    Article  Google Scholar 

  31. 31.

    Eugenius, K. & Amit, B. Matrix Diagonal Stability in Systems and Computation (Birkäuser, Boston, 2000).

    Google Scholar 

  32. 32.

    Hofbauer, J. Saturated equilibria, permanences, and stability for ecological systems. In Mathematical Ecology - Proceedings Of The Autumn Course Research Seminars International Ctr For Theoretical Physics (eds Gross, L. J. et al.) (World Scientific, 1988).

  33. 33.

    Hofbauer, J. & Sigmund, K. Evolutionary Games and Population Dynamics (Cambridge Univ. Press, Cambridge, 1998).

  34. 34.

    Maynard, D. S., Serván, C. A. & Allesina, S. Network spandrels reflect ecological assembly. Ecol. Lett. 21, 324–334 (2018).

    Article  Google Scholar 

  35. 35.

    Dunne, J. A., Labandeira, C. C. & Williams, R. J. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc. R. Soc. Lond. B 281, 20133280 (2014).

    Article  Google Scholar 

  36. 36.

    Kéfi, S. et al. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).

    Article  Google Scholar 

  37. 37.

    Sander, E. L., Wootton, J. T. & Allesina, S. What can interaction webs tell us about species roles? PLoS Comput. Biol. 11, e1004330 (2015).

    Article  Google Scholar 

  38. 38.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    CAS  Article  Google Scholar 

  39. 39.

    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

    CAS  Article  Google Scholar 

  40. 40.

    Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and Theory Vol. 20 (Springer Science & Business Media, Berlin, 1990).

  41. 41.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    CAS  Article  Google Scholar 

  42. 42.

    Staniczenko, P. P., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1391 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Maynard and G. Barabás for comments. C.A.S. and S.A. were supported by NSF-DEB 1148867; J.G. by the Human Frontier Science Program; and J.A.C. by the Spanish Ministerio de Economa y Competitividad project CGL2015-69034-P. A Fulbright Fellowship (programme FMECD-ST-2016, grant number CAS16/00096) allowed J.A.C. to visit the University of Chicago.

Author information

Affiliations

Authors

Contributions

S.A. and C.A.S. devised the study; C.A.S. and K.E.M. solved the mean-zero case; J.A.C. and J.G. the nonzero-mean case; S.A. wrote the main text; J.A.C., C.A.S. and J.G. wrote the Supplementary Information; C.A.S. drew the figures; all authors edited the manuscript.

Corresponding author

Correspondence to Stefano Allesina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Results, Supplementary Figures 1–5, Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serván, C.A., Capitán, J.A., Grilli, J. et al. Coexistence of many species in random ecosystems. Nat Ecol Evol 2, 1237–1242 (2018). https://doi.org/10.1038/s41559-018-0603-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing