Animal resources have been part of hominin diets since around 2.5 million years ago, with sharp-edged stone tools facilitating access to carcasses. How exactly hominins acquired animal prey and how hunting strategies varied through time and space is far from clear. The oldest possible hunting weapons known from the archaeological record are 300,000 to 400,000-year-old sharpened wooden staves. These may have been used as throwing and/or close-range thrusting spears, but actual data on how such objects were used are lacking, as unambiguous lesions caused by such weapon-like objects are unknown for most of human prehistory. Here, we report perforations observed on two fallow deer skeletons from Neumark-Nord, Germany, retrieved during excavations of 120,000-year-old lake shore deposits with abundant traces of Neanderthal presence. Detailed studies of the perforations, including micro-computed tomography imaging and ballistic experiments, demonstrate that they resulted from the close-range use of thrusting spears. Such confrontational ways of hunting require close cooperation between participants, and over time may have shaped important aspects of hominin biology and behaviour.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Ferraro, J. V. et al. Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE 8, e62174 (2013).

  2. 2.

    Domínguez-Rodrigo, M. Stone Tools and Fossil Bones: Debates in the Archaeology of Human Origins (Cambridge Univ. Press, Cambridge, 2012).

  3. 3.

    Oakley, K. P., Andrews, P., Keeley, L. H. & Clark, J. D. A reappraisal of the clacton spearpoint. Proc. Prehist. Soc. 43, 13–30 (1977).

  4. 4.

    Thieme, H. Lower Palaeolithic hunting spears from Germany. Nature 385, 807–810 (1997).

  5. 5.

    Schoch, W. H., Bigga, G., Böhner, U., Richter, P. & Terberger, T. New insights on the wooden weapons from the Paleolithic site of Schöningen. J. Hum. Evol. 89, 214–225 (2015).

  6. 6.

    Churchill, S. Thin on the Ground: Neandertal Biology, Archeology and Ecology (John Wiley & Sons, New York, 2013).

  7. 7.

    Churchill, S. E. Weapon technology, prey size selection, and hunting methods in modern hunter-gatherers: implications for hunting in the Palaeolithic and Mesolithic. Archeol. Pap. AAA 4, 11–24 (1993).

  8. 8.

    Mania, D. et al. Neumark-Nord. Ein interglaziales Ökosystem des mittelpaläolithischen Menschen (ed. Meller, H.) (Veröffentlichungen des Landesamtes für Archäologie Sachsen-Anhalt 62, Beier und Beran, Halle (Saale), 2010).

  9. 9.

    Gaudzinski-Windheuser, S. & Roebroeks, W. E. (eds) Multidisciplinary Studies of the Middle Palaeolithic Record from Neumark-Nord (Germany) Vol. I (Veröffentlichungen des Landesamtes für Archäologie Sachsen-Anhalt 69, Beier und Beran, Halle (Saale), 2014).

  10. 10.

    Gaudzinski-Windheuser, S., Kindler, L., Pop, E., Roebroeks, W. & Smith, G. The Eemian interglacial lake-landscape at Neumark-Nord (Germany) and its potential for our knowledge of hominin subsistence strategies. Quat. Int. 331, 31–38 (2014).

  11. 11.

    Gaudzinski-Windheuser, S. in Elefantenreich. Eine Fossilwelt in Europa (ed. Meller, H.) 427–429 (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Halle (Saale), 2010).

  12. 12.

    Pop, E. et al. Fires at Neumark-Nord 2, Germany: an analysis of fire proxies from a last interglacial middle Palaeolithic basin site. J. Field Arch. 41, 1–15 (2016).

  13. 13.

    Roebroeks, W., Conard, N. J. & van Kolfschoten, T. Dense forests, cold steppes, and the Palaeolithic settlement of Northern Europe. Curr. Anthropol. 33, 551–586 (1992).

  14. 14.

    Palombo, M. R., Albayrak, E. & Marano, F. in Elefantenreich. Eine Fossilwelt in Europa (ed. Meller, H.) 219–247 (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Halle (Saale), 2010).

  15. 15.

    Pfeiffer, T. Sexualdimorphismus, Ontogenie und innerartliche Variabilität der pleistozänen Cervidenpopulation von Dama dama geiselana Pfeiffer 1998 und Cervus elaphus L. (Cervidae, Mammalia) aus Neumark-Nord (Sachsen-Anhalt, Deutschland). Berliner geowiss. Abh. E 30, 207–313 (1999).

  16. 16.

    Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162 (1978).

  17. 17.

    Mania, D. in Neumark-Nord. Ein interglaziales Ökosystem des mittelpaläolithischen Menschen (ed. Meller, H.) 381–408 (Veröffentlichungen des Landesamtes für Archäologie Sachsen-Anhalt 62, Beier und Beran, Halle (Saale), 2010).

  18. 18.

    Fernández-Jalvo, Y. & Andrews, P. Atlas of Taphonomic Identifications. 1001+ Images of Fossil and Recent Mammal Bone Modification (Springer, Heidelberg, 2016).

  19. 19.

    Huchet, J. B. et al. Identification of dermestid pupal chambers on Southern Levant human bones: inference for reconstruction of Middle Bronze Age mortuary practices. J. Archaeol. Sci. 40, 3793–3803 (2013).

  20. 20.

    Noe-Nygaard, N. Mesolithic hunting in Denmark illustrated by bone injuries caused by human weapons. J. Archaeol. Sci. 1, 217–248 (1974).

  21. 21.

    Geist, V. New evidence of high frequency of antler wounding in cervids. Can. J. Zool. 64, 380–384 (1986).

  22. 22.

    Thieme, H. & Veil, S. Neue Untersuchungen zum eemzeitlichen Elefanten-Jagdplatz Lehringen, Ldkr. Verden. Die Kunde 36, 11–58 (1985).

  23. 23.

    Kneubuehl, B. (ed.) Wundballistik. Grundlagen und Anwendungen (Springer, Heidelberg, 2008).

  24. 24.

    Farnam, Y., Mohammadi, S. & Shekarchi, M. Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cement based composite. Int. J. Imp. Eng. 37, 220–229 (2010).

  25. 25.

    Roberts, M. B. & Parfitt, S. A. Boxgrove: A Middle Pleistocene Hominid Site at Eartham Quarry, Boxgrove, West Sussex (English Heritage, London, 1999).

  26. 26.

    Milo, R. G. Evidence for hominid predation at Klasies River Mouth, South Africa, and its implications for the behaviour of early modern humans. J. Archaeol. Sci. 25, 99–133 (1998).

  27. 27.

    Gaudzinski-Windheuser, S. in Multidisciplinary Approaches to the Study of Stone Age Weaponry (eds Iovita, R. & Sano, K.) 77–100 (Springer, Heidelberg, 2016).

  28. 28.

    Nikolskiy, P. & Pitulko, V. Evidence from the Yana Palaeolithic site, Arctic Siberia, yields clues to the riddle of mammoth hunting. J. Archaeol. Sci. 40, 4189–4197 (2013).

  29. 29.

    Letourneux, C. & Pétillon, J.-M. Hunting lesions caused by osseous projectile points: experimental results and archaeological implications. J. Archaeol. Sci. 35, 2849–2862 (2008).

  30. 30.

    Villa, P. & Soriano, S. Hunting weapons of Neanderthals and early modern humans in South Africa: similarities and differences. J. Anthropol. Res. 66, 5–38 (2010).

  31. 31.

    Marean, C. W. An evolutionary anthropological perspective on modern human origins. Annu. Rev. Anthropol. 44, 533–556 (2015).

  32. 32.

    Cattelain, P. & Pétillon, J.-M. Le «type 2a», plus ancien modèle de propulseur paléolithique: une nouvelle pièce dans le Magdalénien moyen d’Isturitz (Pyrénées-Atlantiques, France) et ses implications. PALEO 26, 17–32 (2015).

  33. 33.

    Trinkaus, E. Neandertals, early modern humans, and rodeo riders. J. Arch. Sci. 39, 3691–3693 (2012).

  34. 34.

    Klein, R. G. & Cruz-Uribe, K. The Analysis of Animal Bones from Archaeological Sites (Chicago Univ. Press, Chicago, 1984).

  35. 35.

    Pfeiffer-Deml, T. in Neumark-Nord. Ein interglaziales Ökosystem des mittelpaläolithischen Menschen (ed. Meller, H.) 409–432 (Veröffentlichungen des Landesamtes für Archäologie Sachsen-Anhalt 62, Beier und Beran, Halle (Saale), 2010).

  36. 36.

    Neunert, M., Bloesch, M. & Buchli, J. An open source, fiducial based, visual-inertial motion capture system. In Proc. 19th International Conference on Information Fusion (FUSION) 1523–1530 (IEEE, 2016).

  37. 37.

    O’Driscoll, C. A. & Thompson, J. C. Experimental projectile impact marks on bone: implications for identifying the origins of projectile technology. J. Archaeol. Sci. 49, 398–413 (2014).

  38. 38.

    Kieser, D. C., Riddell, R., Kieser, J. A., Theis, J. & Swain, M. V. Bone micro-fracture observations from direct impact of slow velocity projectiles. JAMM 2, e15614 (2014).

Download references


Excavations at NN2 and studies of the Neumark-Nord assemblages were made possible through financial support from the Lausitzer Mitteldeutsche Braunkohlengesellschaft, Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt (H. Meller), Römisch-Germanisches Zentralmuseum Mainz, Leiden University and its Leids Universiteits Fonds, Netherlands Organization for Scientific Research (Spinoza Grant 28-548 to W.R.), Deutsche Forschungsgemeinschaft (DFG Grant GA 683/7-1 to S.G.-W.) and Alexander von Humboldt-Stiftung. C.H., J.P. and J.B. have been supported by the Swiss National Science Foundation through Professorship awards PP00P2_166163 and PP00P2_138920 to J.B. and ETH Zurich Research Grant ETH-36 14-1. For realizing the experiments, we are thankful for the support of Kung-Fu-School Baiyin Long Neuwied and all colleagues from the MONREPOS Archaeological Research Centre and Museum for Human Behavioral Evolution.

Author information


  1. MONREPOS Archaeological Research Center and Museum for Human Behavioural Evolution, Römisch-Germanisches Zentralmuseum, Leibniz-Research Institute for Archaeology, Neuwied, Germany

    • Sabine Gaudzinski-Windheuser
    • , Elisabeth S. Noack
    • , Eduard Pop
    • , Lutz Kindler
    •  & Martin Street
  2. Institute of Ancient Studies, Johannes Gutenberg-University, Mainz, Germany

    • Sabine Gaudzinski-Windheuser
    • , Elisabeth S. Noack
    •  & Lutz Kindler
  3. Faculty of Archaeology, Leiden University, Leiden, the Netherlands

    • Eduard Pop
    •  & Wil Roebroeks
  4. Agile and Dexterous Robotics Lab, ETH Zurich, Zürich, Switzerland

    • Constantin Herbst
    • , Johannes Pfleging
    •  & Jonas Buchli
  5. Institute for Geology, Johannes Gutenberg-University, Mainz, Germany

    • Arne Jacob
    •  & Frieder Enzmann
  6. Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA

    • Radu Iovita


  1. Search for Sabine Gaudzinski-Windheuser in:

  2. Search for Elisabeth S. Noack in:

  3. Search for Eduard Pop in:

  4. Search for Constantin Herbst in:

  5. Search for Johannes Pfleging in:

  6. Search for Jonas Buchli in:

  7. Search for Arne Jacob in:

  8. Search for Frieder Enzmann in:

  9. Search for Lutz Kindler in:

  10. Search for Radu Iovita in:

  11. Search for Martin Street in:

  12. Search for Wil Roebroeks in:


S.G.-W. conceived the study, analysed the cervid assemblage and discovered the lesions. S.G.-W., E.S.N. and R.I. designed the ballistic experiment. J.B., J.P. and C.H. designed the thrusting spear. S.G.-W., E.S.N., R.I., C.H. and M.S. performed the ballistic experiment. S.G.-W., E.S.N., J.P. and E.P. analysed the results. A.J. and F.E. performed the CT imaging. S.G.-W., W.R., E.P. and E.S.N. wrote the manuscript, with contributions from all other authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Sabine Gaudzinski-Windheuser.

Supplementary information

  1. Supplementary Information

    Supplementary methods, text and figures

  2. Reporting Summary

  3. Supplementary Model Files

    Supplementary Model Files include a readme document and two polygon files comprising the model itself

About this article

Publication history