The evolutionary road from wild moth to domestic silkworm

Abstract

The Silk Road, which derives its name from the trade of silk produced by the domestic silkworm Bombyx mori, was an important episode in the development and interaction of human civilizations. However, the detailed history behind silkworm domestication remains ambiguous, and little is known about the underlying genetics with respect to important aspects of its domestication. Here, we reconstruct the domestication processes and identify selective sweeps by sequencing 137 representative silkworm strains. The results present an evolutionary scenario in which silkworms may have been initially domesticated in China as trimoulting lines, then subjected to independent spreads along the Silk Road that gave rise to the development of most local strains, and further improved for modern silk production in Japan and China, having descended from diverse ancestral sources. We find that genes with key roles in nitrogen and amino acid metabolism may have contributed to the promotion of silk production, and that circadian-related genes are generally selected for their adaptation. We additionally identify associations between several candidate genes and important breeding traits, thereby advancing the applicable value of our resources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Inferred genetic relationships across all sequenced strains.
Fig. 2: Inferred phylogeny and evolutionary relationships among main groups.
Fig. 3: Global selection signatures in silkworm domestication.
Fig. 4: Selection associated with increased silk production in domestication.
Fig. 5: Selection associated with local adaption to domestication and dispersal.
Fig. 6: Application of the SNP data in GWAS to rapidly identify genes underlying six representative traits.

References

  1. 1.

    Larson, G. & Fuller, D. Q. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45, 115–136 (2014).

    Google Scholar 

  2. 2.

    Jensen, P. Behavior genetics and the domestication of animals. Annu. Rev. Anim. Biosci. 2, 85–104 (2014).

    PubMed  Google Scholar 

  3. 3.

    Wang, G.-D., Xie, H.-B., Peng, M.-S., Irwin, D. & Zhang, Y.-P. Domestication genomics: evidence from animals. Annu. Rev. Anim. Biosci. 2, 65–84 (2014).

    CAS  PubMed  Google Scholar 

  4. 4.

    Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).

    CAS  PubMed  Google Scholar 

  5. 5.

    Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement. Nat. Genet. 44, 808–811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Qi, J. et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 45, 1510–1515 (2013).

    CAS  PubMed  Google Scholar 

  7. 7.

    Zhou, Z. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408–414 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Mascher, M. et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat. Genet. 48, 1089–1093 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014).

    CAS  PubMed  Google Scholar 

  10. 10.

    Arunkumar, K. P., Metta, M. & Nagaraju, J. Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Mol. Phylogenet. Evol. 40, 419–427 (2006).

    CAS  PubMed  Google Scholar 

  11. 11.

    Xia, Q. et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326, 433–436 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Peter, B. M. & Slatkin, M. Detecting range expansions from genetic data. Evolution 67, 3274–3289 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hirayama, C. & Nakamura, M. Regulation of glutamine metabolism during the development of Bombyx mori larvae. Biochim. Biophys. Acta 1571, 131–137 (2002).

    CAS  PubMed  Google Scholar 

  17. 17.

    Osanai, M., Okudaira, M., Naito, J., Demura, M. & Asakura, T. Biosynthesis of l-alanine, a major amino acid of fibroin in Samia cynthia ricini. Insect Biochem. Mol. Biol. 30, 225–232 (2000).

    CAS  PubMed  Google Scholar 

  18. 18.

    Hirayama, C., Konno, K. & Shinbo, H. The pathway of ammonia assimilation in the silkworm, Bombyx mori. J. Insect Physiol. 43, 959–964 (1997).

    CAS  PubMed  Google Scholar 

  19. 19.

    Sasaki, T., Kawamura, M. & Ishikawa, H. Nitrogen recycling in the brown planthopper, Nilaparvata lugens: involvement of yeast-like endosymbionts in uric acid metabolism. J. Insect Physiol. 42, 125–129 (1996).

    CAS  Google Scholar 

  20. 20.

    Krall, A. S., Xu, S., Graeber, T. G., Braas, D. & Christofk, H. R. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat. Commun. 7, 11457 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Li, Z. et al. Amino acid deprivation-induced expression of asparagine synthetase regulates the growth and survival of cultured silkworm cells. Arch. Insect Biochem. Physiol. 83, 57–68 (2013).

    CAS  PubMed  Google Scholar 

  22. 22.

    Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Xia, Q., Li, S. & Feng, Q. Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. Annu. Rev. Entomol. 59, 513–536 (2014).

    CAS  PubMed  Google Scholar 

  24. 24.

    Otto-Ślusarczyk, D., Graboń, W. & Mielczarek-Puta, M. Aspartate aminotransferase—key enzyme in the human systemic metabolism. Postepy Hig. Med. Dosw. (Online) 70, 219–230 (2016).

    Google Scholar 

  25. 25.

    Muller, N. A. et al. Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat. Genet. 48, 89–93 (2016).

    PubMed  Google Scholar 

  26. 26.

    Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702–715 (2001).

    CAS  PubMed  Google Scholar 

  27. 27.

    Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M. & Bradshaw, W. E. Keeping time without a spine: what can the insect clock teach us about seasonal adaptation? Phil. Trans. R. Soc. B 372, 20160257 (2017).

    PubMed  Google Scholar 

  28. 28.

    Bodenstein, C., Gosak, M., Schuster, S., Marhl, M. & Perc, M. Modeling the seasonal adaptation of circadian clocks by changes in the network structure of the suprachiasmatic nucleus. PLoS Comput. Biol. 8, e1002697 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Erion, R. & Sehgal, A. Regulation of insect behavior via the insulin-signaling pathway. Front. Physiol. 4, 353 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Zhan, S., Merlin, C., Boore, J. L. & Reppert, S. M. The monarch butterfly genome yields insights into long-distance migration. Cell 147, 1171–1185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Xu, H.-J. et al. Two insulin receptors determine alternative wing morphs in planthoppers. Nature 519, 464–467 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    Sim, C. & Denlinger, D. L. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Natl Acad. Sci. USA 105, 6777–6781 (2008).

    CAS  PubMed  Google Scholar 

  33. 33.

    Sakano, D., Furusawa, T., Sugimura, Y., Storey, J. M. & Storey, K. B. Metabolic shifts in carbohydrate metabolism during embryonic development of non-diapause eggs of the silkworm, Bombyx mori. J. Insect Biotechnol. Sericol. 73, 15–22 (2004).

    CAS  Google Scholar 

  34. 34.

    Chino, H. Carbohydrate metabolism in diapause egg of the silkworm, Bombyx mori. Dev. Growth Differ. 3, 295–316 (1957).

    Google Scholar 

  35. 35.

    Lee, J. C. et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat. Genet. 49, 262–268 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Yano, K. et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 48, 927–934 (2016).

    CAS  PubMed  Google Scholar 

  37. 37.

    Nicola, N. et al. Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nat. Genet. 48, 1–7 (2016).

    Google Scholar 

  38. 38.

    Sakudoh, T. et al. Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene. Proc. Natl Acad. Sci. USA 104, 8941–8946 (2007).

    CAS  PubMed  Google Scholar 

  39. 39.

    Yoda, S. et al. The transcription factor Apontic-like controls diverse colouration pattern in caterpillars. Nat. Commun. 5, 4936 (2014).

    CAS  PubMed  Google Scholar 

  40. 40.

    Ito, K. et al. Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus. Proc. Natl Acad. Sci. USA 105, 7523–7527 (2008).

    CAS  PubMed  Google Scholar 

  41. 41.

    Gupta, T., Kadono-Okuda, K., Ito, K., Trivedy, K. & Ponnuvel, K. M. Densovirus infection in silkworm Bombyx mori and genes associated with disease resistance. Invertebr. Surviv. J. 12, 118–128 (2015).

    Google Scholar 

  42. 42.

    Sakudoh, T. et al. Diversity in copy number and structure of a silkworm morphogenetic gene as a result of domestication. Genetics 187, 965–976 (2011).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Abiko, T. et al. Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP (H)-dependent glutamate dehydrogenase (gdhA). Planta 232, 299–311 (2010).

    CAS  PubMed  Google Scholar 

  44. 44.

    Zhou, Y. et al. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor. Appl. Genet. 118, 1381–1390 (2009).

    CAS  PubMed  Google Scholar 

  45. 45.

    Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014).

    CAS  PubMed  Google Scholar 

  46. 46.

    Rubin, C. J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587–591 (2010).

    CAS  PubMed  Google Scholar 

  47. 47.

    Wiener, P. & Wilkinson, S. Deciphering the genetic basis of animal domestication. Proc. Biol. Sci. 278, 3161–3170 (2011).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Dong, Y. et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31, 135–141 (2013).

    CAS  PubMed  Google Scholar 

  49. 49.

    Pennisi, E. The biology of genomes. On the trail of brain domestication genes. Science 332, 1030–1031 (2011).

    CAS  PubMed  Google Scholar 

  50. 50.

    Grimm, D. Animal domestication. The genes that turned wildcats into kitty cats. Science 346, 799 (2014).

    CAS  PubMed  Google Scholar 

  51. 51.

    Li, Y. et al. Domestication of the dog from the wolf was promoted by enhanced excitatory synaptic plasticity: a hypothesis. Genome Biol. Evol. 6, 3115–3121 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Moon, S. et al. A genome-wide scan for signatures of directional selection in domesticated pigs. BMC Genom. 16, 130 (2015).

    Google Scholar 

  53. 53.

    Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Consortium, I. S. G. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38, 1036–1045 (2008).

    Google Scholar 

  55. 55.

    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Elsik, C. G. et al. Creating a honey bee consensus gene set. Genome Biol. 8, R13 (2007).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Duan, J. et al. SilkDBv2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res. 38, D453–D456 (2010).

    CAS  PubMed  Google Scholar 

  58. 58.

    Stanke, M., Tzvetkova, A. & Morgenstern, B. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol. 7, S11.1–S11.8 (2006).

    Google Scholar 

  59. 59.

    Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).

    Google Scholar 

  60. 60.

    Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    CAS  PubMed  Google Scholar 

  61. 61.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Zhan, S. et al. The genetics of monarch butterfly migration and warning colouration. Nature 514, 317–321 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Tang, H., Peng, J., Wang, P. & Risch, N. J. Estimation of individual admixture: analytical and study design considerations. Genet. Epidemiol. 28, 289–301 (2005).

    PubMed  Google Scholar 

  68. 68.

    Keightley, P. D. et al. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol. Biol. Evol. 32, 239–243 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2004).

    PubMed  Google Scholar 

  70. 70.

    Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Nielsen, R. et al. Genomic scans for selective sweeps using SNP data. Genome Res. 15, 1566–1575 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Yu, H. S. et al. Evidence of selection at melanin synthesis pathway loci during silkworm domestication. Mol. Biol. Evol. 28, 1785–1799 (2011).

    CAS  PubMed  Google Scholar 

  73. 73.

    Sun, W., Shen, Y. H., Han, M. J., Cao, Y. F. & Zhang, Z. An adaptive transposable element insertion in the regulatory region of the EO gene in the domesticated silkworm, Bombyx mori. Mol. Biol. Evol. 31, 3302–3313 (2014).

    CAS  PubMed  Google Scholar 

  74. 74.

    Wang, Y. et al. The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res. 23, 1414–1416 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513–1518 (2011).

    CAS  PubMed  Google Scholar 

  77. 77.

    Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2010).

    PubMed  Google Scholar 

  78. 78.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Huang, S. Xu and K. Wang for discussion on the evolutionary analyses, X. Hu, W. Wang, A. Wang, H. Liu, Q. Li and J. Lian for early contributions to the wild silkworm genome sequencing, and L. Chen and X. Wang for assistance with DNA preparation. The research was supported by the National Key Basic Research (973) Program in China (grant 2013CB835200), National Science Foundation of China (grants 31522053, 91631103, 31672370, 31501877 and 31371286), Chinese Academy of Sciences programme (grant 173176001000162007) and Thousand Talents Program of China (to S.Z.).

Author information

Affiliations

Authors

Contributions

W.W., S.Z. and H.X. conceived the project. S.Z. and H.X. designed the studies. A.X., H.Q. and M.L. provided silkworm strains. M.L. performed phenotyping. H.X. and L.L. prepared the DNA. S.Z. led the analyses. S.Z., H.X., X.L. and G.F. performed the analyses. H.X. annotated and interpreted the selective sweeps. Y.Z., L.W., L.L., Y.C. and X.L. performed the functional experiments. S.Z., H.X. and X.L. wrote the manuscript. W.W. improved the manuscript. Affiliations are sorted based on the numerical order in the author list.

Corresponding authors

Correspondence to Anying Xu or Wen Wang or Shuai Zhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Liu, X., Li, M. et al. The evolutionary road from wild moth to domestic silkworm. Nat Ecol Evol 2, 1268–1279 (2018). https://doi.org/10.1038/s41559-018-0593-4

Download citation

Further reading