Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Social tipping points in animal societies in response to heat stress

Abstract

Living systems sometimes experience abrupt tipping points in response to stress. Here we investigate the factors contributing to the appearance of such abrupt state transitions in animal societies. We first construct a mathematical account of how the personality compositions of societies could alter their propensity to shift from calm to violent states in response to thermal stress. To evaluate our model, we subjected experimental societies of the spider Anelosimus studiosus to heat stress. We demonstrate that both colony size and personality composition influence the timing of and recoverability from sudden transitions in social state. Groups composed of aggressive personalities transitioned into violent within-group dynamics sooner during heating, and also resisted recovery to baseline non-aggressive behaviour during cooling. We further observed hysteresis in groups composed of aggressive individuals, where group behaviour depended strongly on whether the colony had previously been in a calm or agitated state. These results demonstrate that a society’s susceptibility to sudden state shifts and their recoverability from them can be driven by the personalities of their constituents.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Three-state model for social tipping points in social spiders.
Fig. 2: Segmented regression representation of the relationship between temperature and colony infighting.
Fig. 3: Raw data of the relationship between temperature and colony infighting.
Fig. 4: The relationship between temperature and the frequency of interactions occurring within colonies of different sizes (6 versus 20 female spiders) and compositions (aggressive, docile, mixed), as forecasted by a numerical simulation of our model.

References

  1. 1.

    Flack, J. C., Girvan, M., de Waal, F. B. M. & Krakauer, D. C. Policing stabilizes construction of social niches in primates. Nature 439, 426–429 (2006).

    CAS  PubMed  Google Scholar 

  2. 2.

    Flack, J. C., Krakauer, D. C. & de Waal, F. B. M. Robustness mechanisms in primate societies: a perturbation study. Proc. R. Soc. B 272, 1091–1099 (2005).

    PubMed  Google Scholar 

  3. 3.

    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, Princeton, 2009).

  4. 4.

    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS  PubMed  Google Scholar 

  5. 5.

    Dai, L., Korolev, K. S. & Gore, J. Slower recovery in space before collapse of connected populations. Nature 496, 355–358 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Carpenter, S. R., Westley, F. & Turner, M. G. Surrogates for resilience of social–ecological systems. Ecosystems 8, 941–944 (2005).

    Google Scholar 

  7. 7.

    Amable, B., Henry, J., Lordon, F. & Topol, R. Strong hysteresis versus zero-root dynamics. Econ. Lett. 44, 43–47 (1994).

    Google Scholar 

  8. 8.

    Roy, S. B., Chaddah, P. & Chaudhary, S. The anomalous mixed state of the C15-Laves phase superconductor CeRu2: II. History dependence in field-cooled magnetization hysteresis. J. Phys. Condens. Matter 10, 8327 (1998).

    CAS  Google Scholar 

  9. 9.

    Gutschick Vincent, P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42 (2003).

    Google Scholar 

  10. 10.

    Golden, J. S., Guthrie, P. M., Kaloush, K. E. & Britter, R. E. Summertime urban heat island hysteresis lag complexity. Proc. Inst. Civil. Eng. Eng. Sustain. 158, 197–210 (2005).

    Google Scholar 

  11. 11.

    Tarnita, C. E. et al. A theoretical foundation for multi-scale regular vegetation patterns. Nature 541, 398–401 (2017).

    CAS  PubMed  Google Scholar 

  12. 12.

    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).

    Google Scholar 

  13. 13.

    Mumby, P. J., Steneck, R. S. & Hastings, A. Evidence for and against the existence of alternate attractors on coral reefs. Oikos 122, 481–491 (2013).

    Google Scholar 

  14. 14.

    Genton, C. et al. How Ebola impacts social dynamics in gorillas: a multistate modelling approach. J. Anim. Ecol. 84, 166–176 (2015).

    PubMed  Google Scholar 

  15. 15.

    Seeley, T. D. & Buhrman, S. C. Group decision making in swarms of honey bees. Behav. Ecol. Sociobiol. 45, 19–31 (1999).

    Google Scholar 

  16. 16.

    Pratt, S. C., Mallon, E. B., Sumpter, D. J. T. & Franks, N. R. Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 52, 117–127 (2002).

    Google Scholar 

  17. 17.

    Nieh, J. C., Barreto, L. S., Contrera, F. A. L. & Imperatriz-Fonseca, V. L. Olfactory eavesdropping by a competitively foraging stingless bee, Trigona spinipes. Proc. R. Soc. B 271, 1633–1640 (2004).

    PubMed  Google Scholar 

  18. 18.

    Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).

    Google Scholar 

  19. 19.

    Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects (Princeton Univ. Press, Princeton, 1978).

  20. 20.

    Beshers, S. N. & Fewell, J. H. Models of division of labor in social insects. Annu. Rev. Entomol. 46, 413–440 (2001).

    CAS  PubMed  Google Scholar 

  21. 21.

    Fogarty, S., Cote, J. & Sih, A. Social personality polymorphism and the spread of invasive species: a model. Am. Nat. 177, 273–287 (2011).

    PubMed  Google Scholar 

  22. 22.

    Hui, A. & Pinter-Wollman, N. Individual variation in exploratory behaviour improves speed and accuracy of collective nest selection by Argentine ants. Anim. Behav. 93, 261–266 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    O’Shea-Wheller, T. A., Masuda, N., Sendova-Franks, A. B. & Franks, N. R. Variability in individual assessment behaviour and its implications for collective decision-making. Proc. R. Soc. B 284, 20162237 (2017).

  24. 24.

    Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27, 2862–2868.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    McCreery, H. F. A comparative approach to cooperative transport in ants: individual persistence correlates with group coordination. Insect Soc. 64, 535–547 (2017).

    Google Scholar 

  26. 26.

    Paleolog, J. Behavioural characteristics of honey bee (Apis mellifera) colonies containing mix of workers of divergent behavioural traits. Anim. Sci. Pap. Rep. 27, 237–248 (2009).

    Google Scholar 

  27. 27.

    Pruitt, J. N. A real-time eco-evolutionary dead-end strategy is mediated by the traits of lineage progenitors and interactions with colony invaders. Ecol. Lett. 16, 879–886 (2013).

    PubMed  Google Scholar 

  28. 28.

    Pruitt, J. N. & Goodnight, C. J. Site-specific group selection drives locally adapted group compositions. Nature 514, 359–362 (2014).

    CAS  PubMed  Google Scholar 

  29. 29.

    Pruitt, J. N. & Modlmeier, A. P. Animal personality in a foundation species drives community divergence and collapse in the wild. J. Anim. Ecol. 84, 1461–1468 (2015).

    PubMed  Google Scholar 

  30. 30.

    Riechert, S. E. & Jones, T. C. Phenotypic variation in the social behaviour of the spider Anelosimus studiosus along a latitudinal gradient. Anim. Behav. 75, 1893–1902 (2008).

    Google Scholar 

  31. 31.

    Pruitt, J. N., Riechert, S. E. & Jones, T. C. Behavioural syndromes and their fitness consequences in a socially polymorphic spider, Anelosimus studiosus. Anim. Behav. 76, 871–879 (2008).

    Google Scholar 

  32. 32.

    Pruitt, J. N. & Riechert, S. E. Sex matters: sexually dimorphic fitness consequences of a behavioural syndrome. Anim. Behav. 78, 175–181 (2009).

    Google Scholar 

  33. 33.

    Beekman, M., Sumpter, D. J. T. & Ratnieks, F. L. W. Phase transition between disordered and ordered foraging in Pharaoh’s ants. Proc. Natl Acad. Sci. USA 98, 9703–9706 (2001).

    CAS  PubMed  Google Scholar 

  34. 34.

    Duncan, S. I., Riechert, S. E., Fitzpatrick, B. M. & Fordyce, J. A. Relatedness and genetic structure in a socially polymorphic population of the spider Anelosimus studiosus. Mol. Ecol. 19, 810–818 (2010).

    CAS  PubMed  Google Scholar 

  35. 35.

    Furey, R. E. Two cooperatively social populations of the theridiid spider Anelosimus studiosus in a temperate region. Anim. Behav. 55, 727–735 (1998).

    CAS  PubMed  Google Scholar 

  36. 36.

    Pruitt, J. N. & Riechert, S. E. Frequency-dependent success of cheaters during foraging bouts might limit their spread within colonies of a socially polymorphic spider. Evolution 63, 2966–2973 (2009).

    PubMed  Google Scholar 

  37. 37.

    Comparative Climatic Data (National Centers for Environmental Information, accessed 26 November 2017); https://www.ncdc.noaa.gov/ghcn/comparative-climatic-data

  38. 38.

    Carstensen, J. & Weydmann, A. Tipping points in the Arctic: eyeballing or statistical significance? Ambio 41, 34–43 (2012).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl Acad. Sci. USA 111, 723–727 (2014).

    CAS  PubMed  Google Scholar 

  40. 40.

    Vanacker, M., Wezel, A., Payet, V. & Robin, J. Determining tipping points in aquatic ecosystems: the case of biodiversity and chlorophyll α relations in fish pond systems. Ecol. Indic. 52, 184–193 (2015).

    CAS  Google Scholar 

  41. 41.

    Keiser Carl, N. et al. The primary case is not enough: variation among individuals, groups and social networks modify bacterial transmission dynamics. J. Anim. Ecol. 87, 369–378 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    McDougall, P. T., Réale, D., Sol, D. & Reader, S. M. Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim. Conserv. 9, 39–48 (2006).

    Google Scholar 

  43. 43.

    Martin-Wintle, M. S. et al. Do opposites attract? Effects of personality matching in breeding pairs of captive giant pandas on reproductive success. Biol. Conserv. 207, 27–37 (2017).

    Google Scholar 

  44. 44.

    Burns, J. G. & Dyer, A. G. Diversity of speed-accuracy strategies benefits social insects. Curr. Biol. 18, R953–R954 (2008).

    CAS  PubMed  Google Scholar 

  45. 45.

    Modlmeier, A. P. & Foitzik, S. Productivity increases with variation in aggression among group members in Temnothorax ants. Behav. Ecol. 22, 1026–1032 (2011).

    Google Scholar 

  46. 46.

    Daniels, B. C., Krakauer, D. C. & Flack, J. C. Control of finite critical behaviour in a small-scale social system. Nat. Commun. 8, 14301 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Goulet, C. T., Ingley, S. J., Scharf, I. & Pruitt, J. N. Thermal effects on survival and reproductive performance vary according to personality type. Behav. Ecol. 27, 1635–1641 (2016).

    Google Scholar 

  48. 48.

    Pruitt, J. N. & Avilés, L. Social spiders: mildly successful social animals with much untapped research potential. Anim. Behav. https://doi.org/10.1016/j.anbehav.2017.08.015 (2017).

    Google Scholar 

  49. 49.

    Pruitt, J. N., Riechert, S. E. & Harris, D. J. Reproductive consequences of male body mass and aggressiveness depend on females’ behavioral types. Behav. Ecol. Sociobiol. 65, 1957–1966 (2011).

    Google Scholar 

  50. 50.

    Pruitt, J. N., Oufiero, C. E., Avilés, L. & Riechert, S. E. Iterative evolution of increased behavioral variation characterizes the transition to sociality in spiders and proves advantageous. Am. Nat. 180, 496–510 (2012).

    PubMed  Google Scholar 

  51. 51.

    Pruitt, J. N., Iturralde, G., Avilés, L. & Riechert, S. E. Amazonian social spiders share similar within-colony behavioural variation and behavioural syndromes. Anim. Behav. 82, 1449–1455 (2011).

    Google Scholar 

  52. 52.

    Watts, J. C., Ross, C. R. & Jones, T. C. Diel and life-history characteristics of personality: consistency versus flexibility in relation to ecological change. Anim. Behav. 101, 43–49 (2015).

    Google Scholar 

  53. 53.

    Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

    Google Scholar 

  54. 54.

    Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).

    PubMed  Google Scholar 

  55. 55.

    Ferziger, J. H. & Perić, M. Further discussion of numerical errors in CFD. Int. J. Numer. Meth. Fluids 23, 1263–1274 (1996).

    Google Scholar 

Download references

Acknowledgements

E. Eliason, H. Young and D. McCauley kindly provided comments on earlier versions of this manuscript. J.N.P. was supported by National Science Foundation (NSF) Division of Integrative Organismal Systems (IOS) grants 1352705 and 1455895. J.N.P. and I.S. were supported by the United States-Israel Binational Science Foundation (BSF) grant 2013086.

Author information

Affiliations

Authors

Contributions

G.N.D., I.S., H.V.M. and J.N.P. contributed to mathematical modelling, statistical analysis, writing and figure production for this manuscript. J.N.P. collected the empirical data.

Corresponding author

Correspondence to Jonathan N. Pruitt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Text & Statistical Outputs; Supplementary Figures 1–4

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doering, G.N., Scharf, I., Moeller, H.V. et al. Social tipping points in animal societies in response to heat stress. Nat Ecol Evol 2, 1298–1305 (2018). https://doi.org/10.1038/s41559-018-0592-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing