Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The utility of height for the Ediacaran organisms of Mistaken Point

Abstract

Ediacaran fossil communities consist of the oldest macroscopic eukaryotic organisms. Increased size (height) is hypothesized to be driven by competition for water column resources, leading to vertical/epifaunal tiering and morphological innovations such as stems. Using spatial analyses, we find no correlation between tiering and resource competition, and that stemmed organisms are not tiered. Instead, we find that height is correlated with greater offspring dispersal, demonstrating the importance of colonization potential over resource competition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DVS for Mistaken Point communities.
Fig. 2: PCFs for resource competition interactions.

Similar content being viewed by others

References

  1. Pu, J. P. et al. Geology 44, 955–958 (2016).

    CAS  Google Scholar 

  2. Liu, A. G., Kenchington, C. G. & Mitchell, E. G. Gondwana Res. 27, 1355–1380 (2015).

    Google Scholar 

  3. Butterfield, N. J. Trends Ecol. Evol. 26, 81–87 (2011).

    PubMed  Google Scholar 

  4. Woodward, G. et al. Trends Ecol. Evol. 20, 402–409 (2005).

    Google Scholar 

  5. Liu, A. G., Mcllroy, D. & Brasier, M. D. Geology 38, 123–126 (2010).

    Google Scholar 

  6. Clapham, M. E., Narbonne, G. M. & Gehling, J. G. Geology 30, 627–630 (2002).

    Google Scholar 

  7. Laflamme, M., Flude, L. I. & Narbonne, G. M. J. Palaeontol. 86, 193–200 (2012).

    Google Scholar 

  8. Ghisalberti, M. et al. Curr. Biol. 24, 305–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Laflamme, M. & Narbonne, G. M. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 162–179 (2008).

    Google Scholar 

  10. Mitchell, E. G. & Butterfield, N. J. Paleobiology 44, 40–57 (2018).

    Google Scholar 

  11. Mitchell, E. G., Kenchington, C. G., Liu, A. G., Matthews, J. J. & Butterfield, N. J. Nature 524, 343–346 (2015).

    CAS  PubMed  Google Scholar 

  12. Clapham, M. E., Narbonne, G. M. & Gehling, J. G. Paleobiology 29, 527–544 (2003).

    Google Scholar 

  13. Landing, E., Narbonne, G. M. & Myrow, P. Bull. NY State Mus. 463, 1–81 (1988).

    Google Scholar 

  14. Narbonne, G. M. Science 305, 1141–1144 (2004).

    CAS  PubMed  Google Scholar 

  15. Hoyal Cuthill, J. F. & Conway Morris, S. Proc. Natl Acad. Sci. USA 111, 13122–13126 (2014).

    CAS  PubMed  Google Scholar 

  16. Brasier, M. D., Antcliffe, J. B. & Liu, A. G. Palaeontology 55, 1105–1124 (2012).

    Google Scholar 

  17. Liu, A. G., McIlroy, D., Antcliffe, J. B. & Brasier, M. D. Palaeontology 54, 607–630 (2011).

    Google Scholar 

  18. Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G. & Clapham, M. E. Can. J. Earth Sci. 40, 1375–1391 (2003).

    Google Scholar 

  19. Benus, A. P. Bull. NY State Mus. 463, 8–9 (1988).

    Google Scholar 

  20. Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns Vol. 70 (John Wiley, Chichester, 2008).

  21. Diggle, P. Statistical Analysis of Spatial Point Patterns 3rd edn (Arnold, Boca Raton, 2013).

  22. Diggle, P., Zheng, P. & Durr, P. J. R. Stat. Soc. C 54, 645–658 (2005).

    Google Scholar 

  23. Wiegand, T., Gunatilleke, S., Gunatilleke, N. & Okuda, T. Ecology 88, 3088–3102 (2007).

    PubMed  Google Scholar 

  24. Levin, S. A. Ecology 73, 1943–1967 (1992).

    Google Scholar 

  25. McIntire, E. J. & Fajardo, A. Ecology 90, 46–56 (2009).

    PubMed  Google Scholar 

  26. Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-Pattern Analysis in Ecology (CRC Press, Boca Raton, 2013).

  27. Murrell, D. J. & Law, R. Ecol. Lett. 6, 48–59 (2003).

    Google Scholar 

  28. Hoyal Cuthill, J. F. & Conway Morris, S. Nat. Ecol. Evol. 1, 1201–1204 (2017).

    PubMed  Google Scholar 

  29. Laflamme, M., Xiao, S. & Kowalewski, M. Proc. Natl Acad. Sci. USA 106, 14438–14443 (2009).

    CAS  PubMed  Google Scholar 

  30. Darroch, S. A. F., Laflamme, M. & Clapham, M. E. Paleobiology 39, 591–608 (2013).

    Google Scholar 

  31. Droser, M. L. & Gehling, J. G. Science 319, 1660–1662 (2008).

    CAS  PubMed  Google Scholar 

  32. Penny, A. M. et al. Science 344, 1504–1506 (2014).

    CAS  PubMed  Google Scholar 

  33. Yuan, X. et al. Chin. Sci. Bull. 58, 701–707 (2013).

    Google Scholar 

  34. Hua, H., Chen, Z., Yuan, X., Zhang, L. & Xiao, S. Geology 33, 277–280 (2005).

    Google Scholar 

  35. Clapham, M. E. in Quantifying the Evolution of Early Life (eds Laflamme, M., Schiffbauer, J. D. & Dornbos, S. Q.) 3–21 (Springer, Dordrecht, 2011).

  36. Mason, S. J. & Narbonne, G. M. J. Paleontol. 90, 183–194 (2016).

    Google Scholar 

  37. Brasier, M. D. & Antcliffe, J. B. J. Geol. Soc. 166, 363–384 (2009).

    Google Scholar 

  38. Matthews, J. J., Liu, A. G. & McIlroy, D. Geol. Soc. Lond. Spec. Publ. 448, 251–269 (2017).

    Google Scholar 

  39. Narbonne, G. M., Laflamme, M., Trusler, P. W., Dalrymple, R. W. & Greentree, C. J. Paleontol. 88, 207–223 (2014).

    Google Scholar 

  40. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

  41. Baddeley, A. & Turner, R. J. Stat. Softw. 12, 1–42 (2005).

    Google Scholar 

  42. Berman, M. Appl. Stat. 35, 54–62 (1986).

    Google Scholar 

  43. Baddeley, A., Rubak, E. & Møller, J. Stat. Sci. 26, 613–646 (2011).

    Google Scholar 

  44. Wiegand, T. & Moloney, K. Oikos 104, 209–229 (2004).

    Google Scholar 

  45. Wiegand, T., Kissling, W., Cipriotti, P. & Aguiar, M. J. Ecol. 94, 825–837 (2006).

    Google Scholar 

  46. Wiegand, T., Moloney, K., Naves, J. & Knauer, F. Am. Nat. 154, 605–627 (1999).

    PubMed  Google Scholar 

  47. Loosmore, N. B. & Ford, E. D. Ecology 87, 1925–1931 (2006).

    PubMed  Google Scholar 

  48. Levin, S. A. in The Problem of Pattern and Scale in Ecology 277–326 (Springer, Boston, 1995).

    Google Scholar 

  49. Besag, J. J. R. Stat. Soc. B 36, 192–236 (1974).

    Google Scholar 

  50. Thomas, M. Biometrika 36, 18–25 (1949).

    CAS  PubMed  Google Scholar 

  51. Grabarnik, P., Myllymäki, M. & Stoyan, D. Ecol. Model. 222, 3888–3894 (2011).

    Google Scholar 

  52. Fraley, C. & Raftery, A. E. J. Classif. 24, 155–188 (2007).

    Google Scholar 

  53. Fraley, C. & Raftery, A. E. J. Classif. 16, 297–306 (1999).

    Google Scholar 

Download references

Acknowledgements

We thank N. Butterfield and A. Liu for discussions on this manuscript. The Parks and Natural Areas Division, Department of Environment and Conservation, Government of Newfoundland and Labrador provided permits to conduct research within the Mistaken Point Ecological Reserve in 2010, 2016 and 2017. This work has been supported by the Natural Environment Research Council (grant number NE/P002412/1), a Gibbs Travelling Fellowship from Newnham College, Cambridge and a Henslow Junior Research Fellowship from the Cambridge Philosophical Society to E.G.M.

Author information

Authors and Affiliations

Authors

Contributions

E.G.M. and C.G.K. conceived the project, discussed the results and prepared the manuscript. E.G.M. conceived and ran the analyses.

Corresponding author

Correspondence to Emily G. Mitchell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, E.G., Kenchington, C.G. The utility of height for the Ediacaran organisms of Mistaken Point. Nat Ecol Evol 2, 1218–1222 (2018). https://doi.org/10.1038/s41559-018-0591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0591-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing