Local management actions can increase coral resilience to thermally-induced bleaching

Article metrics


Recent large-scale analyses suggest that local management actions may not protect coral reefs from climate change, yet most local threat-reduction strategies have not been tested experimentally. We show that removing coral predators is a common local action used by managers across the world, and that removing the corallivorous snail Coralliophila abbreviata from Caribbean brain corals (Pseudodiploria and Diploria species) before a major warming event increased coral resilience by reducing bleaching severity (resistance) and post-bleaching tissue mortality (recovery). Our results highlight the need for increased evaluation and identification of local interventions that improve coral reef resilience.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Corallivore density experiment on coral tissue loss.
Fig. 2: Effects of corallivore density on coral bleaching and mortality.

Change history

  • 21 June 2018

    In the version of this Brief Communication originally published, the two instances of ‘natural-to-high’ in the sixth and seventh paragraphs were incorrect; they should have read ‘naturally high’.


  1. 1.

    Hughes, T. P. et al. Nature 546, 82–90 (2017).

  2. 2.

    Jackson, J. et al. Status and Trends of Caribbean Coral Reefs: 1970–2012 (Global Coral Reef Monitoring Network, IUCN, Gland, 2014).

  3. 3.

    De’ath, G. et al. Proc. Natl Acad. Sci. USA 109, 17995–17999 (2012).

  4. 4.

    Gunderson, L. H. Annu. Rev. Ecol. Evol. Syst. 31, 425–439 (2000).

  5. 5.

    Vega Thurber, R. L. et al. Glob. Change Biol. 20, 544–554 (2014).

  6. 6.

    Carilli, J. E. et al. PLoS ONE 4, e6324 (2009).

  7. 7.

    Zaneveld, J. R. et al. Nat. Commun. 7, 11833 (2016).

  8. 8.

    Hughes, T. P. et al. Nature 543, 373–377 (2017).

  9. 9.

    Bruno, J. F. & Valdivia, A. Sci. Rep. 6, 29778 (2016).

  10. 10.

    Levin, S. A.. & Lubchenco, J. BioScience 58, 27–32 (2008).

  11. 11.

    Normile, D. Science 352, 15–16 (2016).

  12. 12.

    van Oppen, M. J. H. et al. Glob. Change Biol. 23, 3437–3448 (2017).

  13. 13.

    Knowlton, N. & Jackson, J. B. C. PLoS Biol. 6, e54 (2008).

  14. 14.

    Williams, D. E. & Miller, M. W. Coral Reefs 31, 369–382 (2012).

  15. 15.

    Miller, M. W. Coral Reefs 19, 293–295 (2001).

  16. 16.

    Silliman, B. R. et al. Annu. Rev. Ecol. Evol. Syst. 44, 503–538 (2013).

  17. 17.

    Rotjan, R. D. & Lewis, S. M. Mar. Ecol. Prog. Ser. 367, 73–91 (2008).

  18. 18.

    Miller, A. C. Bull. Mar. Sci. 31, 932–934 (1981).

  19. 19.

    Baums, I. B., Miller, M. W. & Szmant, A. M. Mar. Biol. 142, 1083–1091 (2003).

  20. 20.

    Oren, U., Brickner, I. & Loya, Y. Proc. R. Soc. B 265, 2043–2050 (1998).

  21. 21.

    National Data Buoy Center Station MLRF1—Molasses Reef, FL (NOAA, 2014); http://www.ndbc.noaa.gov/station_page.php?station=mlrf1

  22. 22.

    Manzello, D. P. Sci. Rep. 5, 16762 (2015).

  23. 23.

    Loya, Y. et al. Ecol. Lett. 4, 122–131 (2001).

  24. 24.

    Edmunds, P. J. Mar. Biol. 121, 137–142 (1994).

  25. 25.

    Mooney, C. The Great Barrier Reef is bleaching yet again, and scientists say only swift climate action can save it. Washington Post (15 March 2017).

  26. 26.

    Anthony, K. R. N. et al. Funct. Ecol. 23, 539–550 (2009).

  27. 27.

    Shaver, E. C. et al. Ecology 98, 830–839 (2017).

  28. 28.

    Recovery Plan: Elkhorn Coral (Acropora palmata) and Staghorn Coral (A. cervicornis) (National Marine Fisheries Service, Silver Spring, 2015).

  29. 29.

    McClanahan, T. R. Mar. Ecol. Prog. Ser. 115, 131–138 (1994).

  30. 30.

    Sweatman, H. Curr. Biol. 18, 598–599 (2008).

  31. 31.

    He, Q. et al. Ecol. Lett. 20, 194–201 (2017).

  32. 32.

    Ivlev, V. S. Experimental Ecology of the Feeding of Fishes (Yale Univ. Press, New Haven, 1961).

  33. 33.

    Christensen, R. H. B. ordinal—Regression Models for Ordinal Data. R package version 6–28 (2015).

  34. 34.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).

Download references


We thank S. Csik and C. Fuchs for fieldwork assistance and M. Hay for reviewing this manuscript. The National Science Foundation supported E.C.S. (GRFP DGE 1106401), D.E.B. (BIO-OCE 1130786) and B.R.S. (BIO-OCE 1056980). Duke University supported E.C.S. and B.R.S., and Florida International University and the University of California, Santa Barbara supported D.E.B. We thank The Nature Conservancy's Reef Resilience Program (P. MacGowan, K. Maize, C. Wagner, E. Mcleod), S. Wear, and the Lenfest Ocean Program for helping to inspire and conduct our manager survey work. Permits FKNMS-2014-081 and 2014-099 were obtained from the Florida Keys National Marine Sanctuary to conduct this research.

Author information

The study was conceptualized by E.C.S., D.E.B. and B.R.S. The first draft of the paper was written by E.C.S. All authors contributed to editing subsequent drafts. E.C.S. conducted the predator density experiment. D.E.B. collected data on colony bleaching and mortality. E.C.S. analysed the data and created the figures.

Correspondence to Elizabeth C. Shaver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3; Supplementary Figures 1–3; Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaver, E.C., Burkepile, D.E. & Silliman, B.R. Local management actions can increase coral resilience to thermally-induced bleaching. Nat Ecol Evol 2, 1075–1079 (2018) doi:10.1038/s41559-018-0589-0

Download citation

Further reading