Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental coupling of heritability and selection is rare and of minor evolutionary significance in wild populations

Matters Arising to this article was published on 23 September 2019

Abstract

Predicting the rate of adaptation to environmental change in wild populations is important for understanding evolutionary change. However, predictions may be unreliable if the two key variables affecting the rate of evolutionary change—heritability and selection—are both affected by the same environmental variable. To determine how general such an environmentally induced coupling of heritability and selection is, and how this may influence the rate of adaptation, we made use of freely accessible, open data on pedigreed wild populations to answer this question at the broadest possible scale. Using 16 populations from 10 vertebrate species, which provided data on 50 traits (relating to body mass, morphology, physiology, behaviour and life history), we found evidence for an environmentally induced relationship between heritability and selection in only 6 cases, with weak evidence that this resulted in an increase or decrease in the expected selection response. We conclude that such a coupling of heritability and selection is unlikely to strongly affect evolutionary change, even though both heritability and selection are commonly postulated to be dependent on the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heritability as a function of the standardized selection gradient.
Fig. 2: Meta-analysis on the heritability–selection correlation coefficients.
Fig. 3: No effect of a correlation between heritability and selection on differences in selection response.

Similar content being viewed by others

References

  1. Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    PubMed  Google Scholar 

  2. Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).

    CAS  PubMed  Google Scholar 

  3. Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Merilä, J., Sheldon, B. C. & Kruuk, L. E. B. Explaining stasis: microevolutionary studies in natural populations. Genetica 112–113, 199–222 (2001).

    PubMed  Google Scholar 

  5. Kruuk, L. E. B., Merilä, J. & Sheldon, B. C. When environmental variation short-circuits natural selection. Trends Ecol. Evol. 18, 207–209 (2003).

    Google Scholar 

  6. Darwin, C. On the Origin of Species by Means of Natural Selection (John Murray, London, 1859).

  7. Wade, M. J. & Kalisz, S. The causes of natural selection. Evolution 44, 1947–1955 (1990).

    PubMed  Google Scholar 

  8. Weese, D. J., Gordon, S. P., Hendry, A. P. & Kinnison, M. T. Spatiotemporal variation in linear natural selection on body color in wild guppies (Poecilia reticulata). Evolution 64, 1802–1815 (2010).

    PubMed  Google Scholar 

  9. Gosden, T. P. & Svensson, E. I. Spatial and temporal dynamics in a sexual selection mosaic. Evolution 62, 845–856 (2008).

    PubMed  Google Scholar 

  10. Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, 707–711 (2002).

    CAS  PubMed  Google Scholar 

  11. Hairston, N. G. & Dillon, T. A. Fluctuating selection and response in a population of freshwater copepods. Evolution 44, 1796–1805 (1990).

    PubMed  Google Scholar 

  12. Siepielski, A. M., DiBattista, D. & Carlson, S. M. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).

    PubMed  Google Scholar 

  13. Morrissey, M. B. & Hadfield, J. D. Directional selection in temporally replicated studies is remarkably consistent. Evolution 66, 435–442 (2012).

    PubMed  Google Scholar 

  14. Hoffman, A. A. & Merilä, J. Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol. Evol. 14, 96–101 (1999).

    Google Scholar 

  15. Lédon-Rettig, C. C., Pfennig, D. W., Chunco, A. J. & Dworkin, I. Cryptic genetic variation in natural populations: a predictive framework. Integr. Comp. Biol. 54, 783–793 (2014).

    PubMed  Google Scholar 

  16. Wood, C. W. & Brodie, E. D. III Evolutionary response when selection and genetic variation covary across environments. Ecol. Lett. 19, 1189–1200 (2016).

    PubMed  Google Scholar 

  17. Wood, C. W. & Brodie, E. D. Environmental effects on the structure of the G‐matrix. Evolution 69, 2927–2940 (2015).

    PubMed  Google Scholar 

  18. Wilson, A. J. et al. Environmental coupling of selection and heritability limits evolution. PLoS Biol. 4, e216 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Husby, A., Visser, M. E. & Kruuk, L. E. B. Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol. 9, e1000585 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayward, A. D. et al. Evidence for selection-by-environment but not genotype-by-environment interactions for fitness-related traits in a wild mammal population. Genetics 208, 349–364 (2018).

    PubMed  Google Scholar 

  21. Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).

    CAS  PubMed  Google Scholar 

  22. Culina, A. et al. Navigating the unfolding open data landscape in ecology and evolution. Nat. Ecol. Evol. 2, 420–426 (2018).

    PubMed  Google Scholar 

  23. Whitlock, M. C., McPeek, M. A., Rausher, M. D., Rieseberg, L. & Moore, A. J. Data archiving. Am. Nat. 175, 145–146 (2010).

    PubMed  Google Scholar 

  24. Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).

    Google Scholar 

  25. Culina, A., Crowther, T. W., Ramakers, J. J. C., Gienapp, P. & Visser, M. E. How to do meta-analysis of open datasets. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0579-2 (2018).

    Google Scholar 

  26. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sutherland, MA, 1998).

  27. Finlay, K. W. & Wilkinson, G. N. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 14, 742–754 (1963).

    Google Scholar 

  28. James, J. W. in Adaptation and Fitness in Animal Populations: Evolutionary and Breeding Perspectives on Genetic Resource Management (eds van der Werf, J. et al.) 151–167 (Springer, Dordrecht, 2009).

  29. Yates, F. & Cochran, W. G. The analysis of groups of experiments. J. Agric. Sci. 28, 556–580 (1938).

    Google Scholar 

  30. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    PubMed  Google Scholar 

  31. Morrissey, M. B. & Sakrejda, K. Unification of regression-based methods for the analysis of natural selection. Evolution 67, 2094–2100 (2013).

    PubMed  Google Scholar 

  32. Hereford, J., Hansen, T. F. & Houle, D. Comparing strengths of directional selection: how strong is strong? Evolution 58, 2133–2143 (2004).

    PubMed  Google Scholar 

  33. Garant, D., Kruuk, L. E. B., Wilkin, T. A., McCleery, R. H. & Sheldon, B. C. Evolution driven by differential dispersal within a wild bird population. Nature 433, 60–65 (2005).

    CAS  PubMed  Google Scholar 

  34. Garant, D., Kruuk, L. E. B., McCleery, R. H. & Sheldon, B. C. Evolution in a changing environment: a case study with great tit fledging mass. Am. Nat. 164, E115–E129 (2004).

    PubMed  Google Scholar 

  35. Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).

    PubMed  Google Scholar 

  36. Charmantier, A., Garant, D. & Kruuk, L. E. B. Quantitative Genetics in the Wild (Oxford Univ. Press, Oxford, 2014).

  37. Houle, D. Comparing evolvability and variability of quantitative traits. Genetics 130, 195–204 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Price, T. & Schluter, D. On the low heritability of life-history traits. Evolution 45, 853–861 (1991).

    PubMed  Google Scholar 

  39. Stearns, S. C. & Kawecki, T. J. Fitness sensitivity and the canalization of life-history traits. Evolution 48, 1438–1450 (1994).

    PubMed  Google Scholar 

  40. Visser, M. E., Holleman, L. J. M. & Caro, S. P. Temperature has a causal effect on avian timing of reproduction. Proc. R. Soc. B 276, 2323–2331 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Class, B. & Brommer, J. E. A strong genetic correlation underlying a behavioural syndrome disappears during development because of genotype–age interactions. Proc. R. Soc. B 282, 20142777 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Brommer, J. E., Merilä, J., Sheldon, B. C. & Gustafsson, L. Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Evolution 59, 1362–1371 (2005).

    PubMed  Google Scholar 

  43. Husby, A. et al. Contrasting patterns of phenotypic plasticity in reproductive traits in two great tit (Parus major) populations. Evolution 64, 2221–2237 (2010).

    PubMed  Google Scholar 

  44. Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).

    CAS  PubMed  Google Scholar 

  45. Gienapp, P. The choice of the environmental covariate affects the power to detect individual variation in reaction norm slopes. Preprint at https://doi.org/10.1101/311217 (2018).

  46. Schaeffer, L. R. Application of random regression models in animal breeding. Livest. Prod. Sci. 86, 35–45 (2004).

    Google Scholar 

  47. Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).

    CAS  PubMed  Google Scholar 

  48. Hadfield, J. Estimating evolutionary parameters when viability selection is operating. Proc. R. Soc. B 275, 723–734 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. Morrissey, M. B., Kruuk, L. E. B. & Wilson, A. J. The danger of applying the breeder’s equation in observational studies of natural populations. J. Evol. Biol. 23, 2277–2288 (2010).

    CAS  PubMed  Google Scholar 

  50. Reed, T. E., Gienapp, P. & Visser, M. E. Testing for biases in selection on avian reproductive traits and partitioning direct and indirect selection using quantitative genetic models. Evolution 70, 2211–2225 (2016).

    PubMed  Google Scholar 

  51. Morrissey, M. B. & Ferguson, M. M. A test for the genetic basis of natural selection: an individual-based longitudinal study in a stream-dwelling fish. Evolution 65, 1037–1047 (2011).

    PubMed  Google Scholar 

  52. Mills, J. A. et al. Archiving primary data: solutions for long-term studies. Trends Ecol. Evol. 30, 581–589 (2015).

    PubMed  Google Scholar 

  53. Evans, S. R. Gauging the purported costs of public data archiving for long-term population studies. PLoS Biol. 14, e1002432 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Whitlock, M. C. et al. A balanced data archiving policy for long-term studies. Trends Ecol. Evol. 31, 84–85 (2016).

    PubMed  Google Scholar 

  55. Mills, J. A. et al. Solutions for archiving data in long-term studies: a reply to Whitlock et al. Trends Ecol. Evol. 31, 85–87 (2016).

    PubMed  Google Scholar 

  56. Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).

    PubMed  Google Scholar 

  57. Gienapp, P. et al. Genomic quantitative genetics to study evolution in the wild. Trends Ecol. Evol. 32, 897–908 (2017).

    PubMed  Google Scholar 

  58. Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B 275, 649–659 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Ramakers, J. J. C., Culina, A., Visser, M. E. & Gienapp, P. Dryad Data from: Environmental coupling of heritability and selection is rare and of minor evolutionary significance in wild populations (Dryad Digital Repository, 2018); https://doi.org/10.5061/dryad.3mk7f2q

  61. Visser, M. E. et al. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLoS Biol. 13, e1002120 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Gilmour, A. R., Gogel, B. J., Cullis, B. R. & Thompson, R. ASReml User Guide. Release 3.0 (VSN International, 2009).

  63. Butler, D., Cullis, B. R., Gilmour, A. R. & Gogel, D. J. ASReml-R Reference Manual, Release 3.0 (Department of Primary Industries and Fisheries, 2009).

  64. Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Phil. Trans. R. Soc. B 359, 873–890 (2004).

    PubMed  PubMed Central  Google Scholar 

  65. Henderson, C. R. Theoretical basis and computational methods for a number of different animal models. J. Dairy Sci. 71, 1–16 (1988).

    Google Scholar 

  66. Haldfield, J. MCMCglmm Course Notes (Comprehensive R Archive Network, 2014); https://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf

  67. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  68. Lillehammer, M., Ødegård, J. & Meuwissen, T. H. E. Reducing the bias of estimates of genotype by environment interactions in random regression sire models. Genet. Sel. Evol. 41, 30 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Schuurman, N. K., Grasman, R. P. P. P. & Hamaker, E. L. A comparison of inverse-Wishart prior specifications for covariance matrices in multilevel autoregressive models. Multivar. Behav. Res. 51, 185–206 (2016).

    CAS  Google Scholar 

  70. Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1, 515–534 (2006).

    Google Scholar 

  71. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 64, 583–639 (2002).

    Google Scholar 

  72. Millar, R. B. Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes’ factors. Biometrics 65, 962–969 (2009).

    PubMed  Google Scholar 

  73. De Jong, G. Quantitative genetics of reaction norms. J. Evol. Biol. 3, 447–468 (1990).

    Google Scholar 

  74. Wood, S. Package ‘mgcv’: Mixed GAM Computation Vehicle with Automatic Smoothness Automation (Comprehensive R Archive Network, 2017); https://cran.r-project.org/web/packages/mgcv/mgcv.pdf

  75. Morrissey, M. B. & Sakrejda, K. Package ‘gsg’: Calculation of Selection Coefficients (Comprehensive R Archive Network, 2015); https://cran.r-project.org/web/packages/gsg/gsg.pdf

  76. Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    PubMed  Google Scholar 

  77. Niemelä, P. T. & Dingemanse, N. J. Meta-analysis reveals weak associations between intrinsic state and personality. Proc. R. Soc. B 285, 20172823 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Bates, D., Bolker, B., Bojesen, R. H., Singmann, H. & Grothendieck, G. Package ‘lme4’: Linear Mixed-Effects Models using ‘Eigen’ and S4 (Comprehensive R Archive Network, 2015).

  79. Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).

    Google Scholar 

  80. Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longmans Green, Harlow, 1996).

  81. Becker, P. J. J., Hegelbach, J., Keller, L. F. & Postma, E. Dryad Data from: Phenotype-associated inbreeding biases estimates of inbreeding depression in a wild bird population. (Dryad Digital Repository, 2016); https://doi.org/10.5061/dryad.53g68

  82. Becker, P. J. J., Hegelbach, J., Keller, L. F. & Postma, E. Phenotype-associated inbreeding biases estimates of inbreeding depression in a wild bird population. J. Evol. Biol. 29, 35–46 (2016).

    CAS  PubMed  Google Scholar 

  83. Bonnet, T., Wandeler, P., Camenisch, G. & Postma, E. Bigger is fitter? Quantitative genetic composition of selection reveals an adaptive evolutionary decline of body mass in a wild rodent population. PLoS Biol. 15, e1002592 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Class, B. & Brommer, J. E. Dryad Data from: A strong genetic correlation underlying a behavioural syndrome disappears during development because of genotype–age interactions. (Dryad Digital Repository, 2015); https://doi.org/10.5061/dryad.443g2

  85. Delahaie, B. et al. Dryad Data from: Conserved G-matrices of morphological and life-history traits among continental and island blue tit populations. (Dryad Digital Repository, 2017); https://doi.org/10.5061/dryad.03mn0

  86. Delahaie, B. et al. Conserved G-matrices of morphological and life-history traits among continental and island blue tit populations. Heredity 119, 76–87 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Thomson, C. E. et al. Dryad Data from: Selection on parental performance opposes selection for larger body mass in a wild population of blue tits. (Dryad Digital Repository, 2017); https://doi.org/10.5061/dryad.m2c10

  88. Thomson, C. E. et al. Selection on parental performance opposes selection for larger body mass in a wild population of blue tits. Evolution 71, 716–732 (2017).

    PubMed  Google Scholar 

  89. Kim, S., Fargallo, J. A., Vergara, P. & Martínez-Padilla, J. Dryad Data from: Multivariate heredity of melanin-based coloration, body mass and immunity. (Dryad Digital Repository, 2013); https://doi.org/10.5061/dryad.03mn0

  90. Kim, S., Fargallo, J. A., Vergara, P. & Martínez-Padilla, J. Multivariate heredity of melanin-based coloration, body mass and immunity. Heredity 111, 139–146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Teplitsky, C., Mouawad, N. G., Balbontín, J., de Lope, F. & Møller A. P. Dryad Data from: Quantitative genetics of migration syndromes: a study of two barn swallow populations. (Dryad Digital Repository, 2011); https://doi.org/10.5061/dryad.41np7

  92. Teplitsky, C., Mouawad, N. G., Balbontín, J., de Lope, F. & Møller, A. P. Quantitative genetics of migration syndromes: a study of two barn swallow populations. J. Evol. Biol. 24, 2025–2039 (2011).

    CAS  PubMed  Google Scholar 

  93. Ljungström, G., Stjernstedt, M., Wapstra, E. & Olsson, M. Dryad Data from: Selection and constraints on offspring size-number trade-offs in sand lizards (Lacerta agilis). (Dryad Digital Repository, 2016); https://doi.org/10.5061/dryad.700jq

  94. Ljungström, G., Stjernstedt, M., Wapstra, E. & Olsson, M. Selection and constraints on offspring size-number trade-offs in sand lizards (Lacerta agilis). J. Evol. Biol. 29, 979–990 (2016).

    PubMed  Google Scholar 

  95. Evans, S. R. & Sheldon, B. C. Dryad Data from: Colour in a new light: a spectral perspective on the quantitative genetics of carotenoid coloration. (Dryad Digital Repository, 2015); https://doi.org/10.5061/dryad.1cn02

  96. Evans, S. R. & Sheldon, B. C. Colour in a new light: a spectral perspective on the quantitative genetics of carotenoid coloration. Funct. Ecol. 29, 96–103 (2015).

    Google Scholar 

  97. Santure, A. W. et al. Dryad Data from: Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. (Dryad Digital Repository, 2015); https://doi.org/10.5061/dryad.5t32v

  98. Santure, A. W. et al. Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. Mol. Ecol. 24, 6148–6162 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Reed, T. E., Gienapp, P. & Visser, M. E. Dryad Data from: Testing for biases in selection on avian reproductive traits and partitioning direct and indirect selection using quantitative genetic models. (Dryad Digital Repository, 2016); https://doi.org/10.5061/dryad.1255v

  100. Mulder, H. A., Gienapp, P. & Visser, M. E. Dryad Data from: Genetic variation in variability: phenotypic variability of fledging weight and its evolution in a songbird population. (Dryad Digital Repository, 2016); https://doi.org/10.5061/dryad.2qv8n

  101. Mulder, H. A., Gienapp, P. & Visser, M. E. Phenotypic variability of fledging weight and its evolution in a songbird: do families differ genetically? Evolution 70, 2004–2016 (2016).

    PubMed  Google Scholar 

  102. Gienapp, P. & Merilä, J. Dryad Data from: Disentangling plastic and genetic changes in body mass of Siberian jays. (Dryad Digital Repository, 2014); https://doi.org/10.5061/dryad.4v514

  103. Gienapp, P. & Merilä, J. Disentangling plastic and genetic changes in body mass of Siberian jays. J. Evol. Biol. 27, 1849–1858 (2014).

    CAS  PubMed  Google Scholar 

  104. Wheelwright, N. T., Keller, L. F. & Postma, E. Dryad Data from: The effect of trait type and strength of selection on heritability and evolvability in an island bird population. (Dryad Digital Repository, 2014); https://doi.org/10.5061/dryad.dv0qt.2

  105. Wheelwright, N. T., Keller, L. F. & Postma, E. The effect of trait type and strength of selection on heritability and evolvability in an island bird population. Evolution 68, 3325–3336 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all the original data owners who found time in their tight schedules to reply to our e-mails, or who otherwise contributed to the discussion (including people whose data we did not end up using for our analyses). Specifically, we thank—in no particular order—B. Sheldon, A. Husby, E. Postma, B. Schloegl, K. Foerster, J. Fargallo, J. Brommer, B. Class, A. Møller, G. Ljüngstrom, S. Blanchet, N. Wheelwright, M. Nicolaus, N. Dingemanse, S. Sakaluk, A. Wilson, J. Hadfield, J. Hubbard, J. Reid, P. Arcese, E. Huchard, T. Clutton-Brock, J. Pemberton, S. Johnston, T. Bonnet and B. Delahaie. S. Nakagawa kindly advised us on the meta-analysis. T. Reed and A. Husby provided useful comments on the manuscript. This work was funded in part by NIOO Strategic funds (SM1521) and an ERC Advanced Grant (339092 - E-Response) to M.E.V.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the study. A.C. and J.J.C.R. retrieved the datasets. J.J.C.R. and P.G. designed the analysis protocol, with assistance from A.C. in the meta-analysis. J.J.C.R. screened the retrieved datasets, contacted the original authors, conducted the analyses and drafted the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Jip J. C. Ramakers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–3

Reporting Summary

Supplementary Data

Supplementary Table 1.1 (All datasets initially retrieved and considered for analysis); Supplementary Table 1.2 (Repositories associated with each dataset in Supplementary Table 1.1); Supplementary Table 2 (Data necessary to reproduce the heritability — selection regressions in Fig 1 and to calculate expected response to selection); Supplementary Table 3 (Data necessary to replicate the meta-analysis on the correlation coefficient of the relationship between heritability and selection).

Supplementary Code

R code examples for each analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakers, J.J.C., Culina, A., Visser, M.E. et al. Environmental coupling of heritability and selection is rare and of minor evolutionary significance in wild populations. Nat Ecol Evol 2, 1093–1103 (2018). https://doi.org/10.1038/s41559-018-0577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0577-4

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene