Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The macroecological dynamics of species coexistence in birds

This article has been updated

Abstract

Ecological communities are assembled from the overlapping of species in geographic space, but the mechanisms facilitating or limiting such overlaps are difficult to resolve. Here, we combine phylogenetic, morphological and environmental data to model how multiple processes regulate the origin and maintenance of geographic range overlap across 1,115 pairs of avian sister species globally. We show that coexistence cannot be adequately predicted by either dispersal-assembly (that is, biogeographic) models or niche-assembly models alone. Instead, our results overwhelmingly support an integrated model with different assembly processes dominating at different stages of coexistence. The initial attainment of narrow geographic overlap is dictated by intrinsic dispersal ability and the time available for dispersal, whereas wider coexistence is largely dependent on niche availability, increasing with ecosystem productivity and divergence in niche-related traits, and apparently declining as communities become saturated with species. Furthermore, although coexistence of any individual pair of species is highly stochastic, we find that integrating assembly processes allows broad variation in the incidence and extent of coexistence to be predicted with reasonable accuracy. Our findings demonstrate how phylogenetic data coupled with environmental factors and functional traits can begin to clarify the multi-layered processes shaping the distribution of biodiversity at large spatial scales.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Models of species coexistence.
Fig. 2: Historical, intrinsic and environmental predictors of sympatry in birds.
Fig. 3: Relative support for different coexistence scenarios
Fig. 4: Scale dependency in the predictability of coexistence.

Change history

  • 18 June 2019

    The Supplementary Data file initially published online was corrupted and was replaced on 18th June 2019.

References

  1. 1.

    Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).

    PubMed  Google Scholar 

  2. 2.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, Princeton, 2001).

  3. 3.

    Wiens, J. J. The niche, biogeography and species interactions. Phil. Trans. R. Soc. B 366, 2336–2350 (2011).

    PubMed  Google Scholar 

  4. 4.

    MacArthur, J. W. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, Princeton, 1967).

  5. 5.

    Harmon, L. J. & Harrison, S. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185, 584–593 (2015).

    PubMed  Google Scholar 

  6. 6.

    Leprieur, F. et al. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 11461 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    MacArthur, R. H. Geographical Ecology: Patterns in the Distributions of Species (Harper and Row, New York, 1972).

  8. 8.

    Diamond, J. M. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 342–444 (Harvard Univ. Press, Cambridge, 1975).

  9. 9.

    Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, Chicago, 2003).

  10. 10.

    Levine, J. M. & HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).

    CAS  PubMed  Google Scholar 

  11. 11.

    Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Rabosky, D. L. & Hurlbert, A. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).

    PubMed  Google Scholar 

  13. 13.

    Pigot, A. L., Tobias, J. A. & Jetz, W. Energetic constraints on species coexistence in birds. PLoS Biol. 14, e1002407 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Vellend, M. The Theory of Ecological Communities (Princeton Univ. Press, Princeton, 2016).

  15. 15.

    Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett. 9, 399–409 (2006).

    PubMed  Google Scholar 

  16. 16.

    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Google Scholar 

  17. 17.

    Tilman, D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004).

    CAS  PubMed  Google Scholar 

  18. 18.

    Pigot, A. L. & Etienne, R. S. A new dynamic null model for phylogenetic community structure. Ecol. Lett. 18, 153–163 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Mittelbach, G. & Schemske, D. W. Ecological and evolutionary perspectives on community assembly. Trends Ecol. Evol. 30, 241–247 (2015).

    PubMed  Google Scholar 

  20. 20.

    Boulangeat, I., Gravel, D. & Thuiller, W. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol. Lett. 15, 584–593 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78, 81–92 (1997).

    Google Scholar 

  22. 22.

    Gilbert, B. & Lechowicz, M. J. Neutrality, niches, and dispersal in a temperate forest understory. Proc. Natl Acad. Sci. USA 101, 7651–7656 (2004).

    CAS  PubMed  Google Scholar 

  23. 23.

    Warren, D. L., Cardillo, M., Rosauer, D. F. & Bolnick, D. I. Mistaking geography for biology: inferring processes from species distributions. Trends Ecol. Evol. 29, 572–580 (2014).

    PubMed  Google Scholar 

  24. 24.

    McGill, B. J. Matters of scale. Science 328, 575–576 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Chase, J. M. Spatial scale resolves the niche versus neutral theory debate. J. Veg. Sci. 25, 319–322 (2014).

    Google Scholar 

  26. 26.

    Pigot, A. L. & Tobias, J. A. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16, 330–338 (2013).

    PubMed  Google Scholar 

  27. 27.

    Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 32, 291–304 (2017).

    PubMed  Google Scholar 

  28. 28.

    Pigot, A. L. & Tobias, J. A. Dispersal and the transition to sympatry in vertebrates. Proc. R. Soc. B 282, 20141929 (2015).

    PubMed  Google Scholar 

  29. 29.

    Weber, M. G. & Strauss, S. Y. Coexistence in close relatives: beyond competition and reproductive isolation in sister taxa. Annu. Rev. Ecol. Evol. Syst. 47, 359–381 (2016).

    Google Scholar 

  30. 30.

    Lowe, W. H. & McPeek, M. A. Is dispersal neutral? Trends Ecol. Evol. 29, 444–450 (2014).

    PubMed  Google Scholar 

  31. 31.

    Mayr, E. Bird speciation in the tropics. J. Ecol. 57, 1–17 (1969).

    Google Scholar 

  32. 32.

    Davies, T. J., Meiri, S., Barraclough, T. G. & Gittleman, J. L. Species co-existence and character divergence across carnivores. Ecol. Lett. 10, 146–152 (2007).

    PubMed  Google Scholar 

  33. 33.

    Anacker, B. L. & Strauss, S. Y.The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc. R. Soc. B 281, 20132980 (2014).

    PubMed  Google Scholar 

  34. 34.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  PubMed  Google Scholar 

  35. 35.

    Claramunt, S., Derryberry, E. P., Remsen, J. V. & Brumfield, R. T. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. R. Soc. B 279, 1567–1574 (2012).

    PubMed  Google Scholar 

  36. 36.

    Pigot, A. L., Trisos, C. & Tobias, J. A.Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B 283, 20152013 (2016).

    PubMed  Google Scholar 

  37. 37.

    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science 313, 224–226 (2006).

    CAS  PubMed  Google Scholar 

  38. 38.

    Losos, J. B. & Glor, R. E. Phylogenetic comparative methods and the geography of speciation. Trends Ecol. Evol. 18, 220–227 (2003).

    Google Scholar 

  39. 39.

    Fitzpatrick, B. M. & Turelli, M. The geography of mammalian speciation: mixed signals from phylogenies and range maps. Evolution 60, 601–615 (2006).

    CAS  PubMed  Google Scholar 

  40. 40.

    Weir, J. T. & Price, T. D. Limits to speciation inferred from times to secondary sympatry and ages of hybridizing species along a latitudinal gradient. Am. Nat. 177, 462–469 (2011).

    PubMed  Google Scholar 

  41. 41.

    Kennedy, J. D. et al. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proc. R. Soc. B 283, 20161922 (2016).

    PubMed  Google Scholar 

  42. 42.

    Ricklefs, R. E. Host–pathogen coevolution, secondary sympatry and species diversification. Phil. Trans. R. Soc. B 365, 1139–1147 (2010).

    PubMed  Google Scholar 

  43. 43.

    Cooney, C. R., Tobias, J. A., Weir, J. T., Botero, C. A. & Seddon, N. Sexual selection, speciation, and constraints on geographical range overlap in birds. Ecol. Lett. 20, 863–871 (2017).

    PubMed  Google Scholar 

  44. 44.

    Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    PubMed  Google Scholar 

  45. 45.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Google Scholar 

  46. 46.

    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    CAS  PubMed  Google Scholar 

  47. 47.

    Brown, W. L. & Wilson, E. O. Character displacement. Syst. Zool. 5, 49–64 (1956).

    Google Scholar 

  48. 48.

    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93, 145–159 (1959).

    Google Scholar 

  49. 49.

    Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).

    Google Scholar 

  50. 50.

    Pfennig, D. W. & Pfennig, K. S. Character displacement and the origins of diversity. Am. Nat. 176, S26–S44 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Macarthur, R. & Macarthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).

    Google Scholar 

  52. 52.

    Hurlbert, A. H. & Jetz, W. More than “more individuals”: the nonequivalence of area and energy in the scaling of species richness. Am. Nat. 176, E50–E65 (2010).

    PubMed  Google Scholar 

  53. 53.

    Rosenzweig, M. L. in The Ecology and Evolution of Communities (eds Cody, M. & Diamond, J. M.) 121–140 (Harvard Univ. Press, Cambridge, 1975).

  54. 54.

    Rabosky, D. L. & Glor, R. E. Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proc. Natl Acad. Sci. USA 107, 22178–22183 (2010).

    CAS  PubMed  Google Scholar 

  55. 55.

    Cornell, H. V. Is regional species diversity bounded or unbounded?. Biol. Rev. 88, 140–165 (2013).

    PubMed  Google Scholar 

  56. 56.

    Jetz, W. & Fine, P. V. A.Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment.PLoS Biol. 10, e1001292 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Garzon-Lopez, C. X., Jansen, P. A., Bohlman, S. A., Ordonez, A. & Olff, H. Effects of sampling scale on patterns of habitat association in tropical trees. J. Veg. Sci. 25, 349–362 (2014).

    Google Scholar 

  58. 58.

    Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).

    Google Scholar 

  59. 59.

    Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

    CAS  PubMed  Google Scholar 

  60. 60.

    Weir, J. T. & Schluter, D. Calibrating the avian molecular clock. Mol. Ecol. 17, 2321–2328 (2008).

    CAS  PubMed  Google Scholar 

  61. 61.

    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, 1211–1219 (2007).

    CAS  Google Scholar 

  62. 62.

    Cramer, W. et al. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5, 1–15 (1999).

    Google Scholar 

  63. 63.

    Wilman, W., Belmaker, J., Simpson, J., de la Rosa, C. & Rivadeneira, M. M. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Google Scholar 

  64. 64.

    Miles, D. B. & Ricklefs, R. E. The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65, 1629–1640 (1984).

    Google Scholar 

  65. 65.

    Grant, P. R. The Ecology and Evolution of Darwin’s Finches (Princeton Univ. Press, Princeton, 1999).

  66. 66.

    Schoener, T. W. Large-billed insectivorous birds: a precipitous diversity gradient. Condor 73, 154–161 (1971).

    Google Scholar 

  67. 67.

    Mayr, E. Systematics and the Origin of Species (Columbia Univ. Press, New York, 1942).

  68. 68.

    Coyne, J. A. & Price, T. D. Little evidence for sympatric speciation in island birds. Evolution 54, 2166–2171 (2000).

    CAS  PubMed  Google Scholar 

  69. 69.

    Phillimore, A. B. et al. Sympatric speciation in birds is rare: insights from range data and simulations. Am. Nat. 171, 646–657 (2008).

    PubMed  Google Scholar 

  70. 70.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

  71. 71.

    Jackson, C. H. Multi-state models for panel data: the msm package for R. J. Stat. Softw. 38, 1–28 (2011).

    Google Scholar 

  72. 72.

    Burnham, K. P. & Anderson, D. R. Multimodel inference. Sociol. Methods Res. 33, 261–304 (2004).

    Google Scholar 

  73. 73.

    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS  PubMed  Google Scholar 

  74. 74.

    McFadden, D. in Frontiers in Econometrics (ed. Zarembka, P.) 104–142 (Academic Press, New York, 1974).

Download references

Acknowledgements

We are grateful to C. Cooney, C. Trisos and members of the Jetz Lab for feedback, helpful discussions and comments that greatly improved the manuscript. This research was funded by the Netherlands Organisation for Scientific Research VENI grant 863.13.003 (to A.L.P.), NASA Biodiversity grant NNX11AP72G and NSF grants NSF DBI 1262600, DBI 0960550 and DEB 1026764 (to W.J.), the Oxford Clarendon Fund and US-UK Fulbright Commission (to C.S.), and the John Fell Fund and NERC grant NE/I028068/1 (to J.A.T.). We thank many museums for access to specimens, and in particular the Natural History Museum at Tring (see Supplementary information for an expanded list of contributing individuals and institutions).

Author information

Affiliations

Authors

Contributions

A.L.P., W.J., C.S. and J.A.T. conceived the study. C.S., J.A.T. and W.J. contributed data. A.L.P. performed the analysis and wrote the first draft. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Alex L. Pigot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1–5

Reporting Summary

Supplementary Data

A .zip file containing the code and data used in the analysis

Supplementary Note

A description of the contents of Supplementary Data .zip file, which contains three folders: ‘Code’,‘InputData’ and ‘Output’

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pigot, A.L., Jetz, W., Sheard, C. et al. The macroecological dynamics of species coexistence in birds. Nat Ecol Evol 2, 1112–1119 (2018). https://doi.org/10.1038/s41559-018-0572-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing