Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Division of labour and the evolution of extreme specialization

Abstract

Division of labour is a common feature of social groups, from biofilms to complex animal societies. However, we lack a theoretical framework that can explain why division of labour has evolved on certain branches of the tree of life but not others. Here, we model the division of labour over a cooperative behaviour, considering both when it should evolve and the extent to which the different types should become specialized. We found that: (1) division of labour is usually—but not always—favoured by high efficiency benefits to specialization and low within-group conflict; and (2) natural selection favours extreme specialization, where some individuals are completely dependent on the helping behaviour of others. We make a number of predictions, several of which are supported by the existing empirical data, from microbes and animals, while others suggest novel directions for empirical work. More generally, we show how division of labour can lead to mutual dependence between different individuals and hence drive major evolutionary transitions, such as those to multicellularity and eusociality.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The different possible forms of division of labour.
Fig. 2: A division of labour model.
Fig. 3: The evolution of division of labour.
Fig. 4: The evolution of extreme specialization.
Fig. 5: The proportion of helpers and the level of cooperation.

Similar content being viewed by others

References

  1. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (Oxford Univ. Press, Oxford, 1997).

  2. Bourke, A. F. Principles of Social Evolution (Oxford Univ. Press, Oxford, 2011).

  3. Boomsma, J. J. Kin selection versus sexual selection: why the ends do not meet. Curr. Biol. 17, R673–R683 (2007).

    CAS  PubMed  Google Scholar 

  4. West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

    CAS  PubMed  Google Scholar 

  5. Queller, D. C. Relatedness and the fraternal major transitions. Phil. Trans. R. Soc. Lond. B 355, 1647–1655 (2000).

    CAS  Google Scholar 

  6. Michod, R. E., Viossat, Y., Solari, C. A., Hurand, M. & Nedelcu, A. M. Life-history evolution and the origin of multicellularity. J. Theor. Biol. 239, 257–272 (2006).

    PubMed  Google Scholar 

  7. Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects. (Princeton Univ. Press: Princeton, 1978).

    Google Scholar 

  8. Wilson, E. O. The ergonomics of caste in the social insects. Am. Nat. 102, 41–66 (1968).

    Google Scholar 

  9. Willensdorfer, M. On the evolution of differentiated multicellularity. Evolution 63, 306–323 (2009).

    PubMed  Google Scholar 

  10. Rossetti, V., Schirrmeister, B. E., Bernasconi, M. V. & Bagheri, H. C. The evolutionary path to terminal differentiation and division of labor in cyanobacteria. J. Theor. Biol. 262, 23–34 (2010).

    PubMed  Google Scholar 

  11. Ispolatov, I., Ackermann, M. & Doebeli, M. Division of labour and the evolution of multicellularity. Proc. R.Soc. B 279, 1768–1776 (2012).

    PubMed  Google Scholar 

  12. Solari, C. A., Kessler, J. O. & Goldstein, R. E. A general allometric and life-history model for cellular differentiation in the transition to multicellularity. Am. Nat. 181, 369–380 (2013).

    PubMed  Google Scholar 

  13. Rueffler, C., Hermisson, J. & Wagner, G. P. Evolution of functional specialization and division of labor. Proc. Natl Acad. Sci. USA 109, E326–E335 (2012).

    CAS  PubMed  Google Scholar 

  14. Tannenbaum, E. When does division of labor lead to increased system output? J. Theor. Biol. 247, 413–425 (2007).

    PubMed  Google Scholar 

  15. Michod, R. E. Evolution of individuality during the transition from unicellular to multicellular life. Proc. Natl Acad. Sci. USA 104, 8613–8618 (2007).

    CAS  PubMed  Google Scholar 

  16. West, S. A. & Cooper, G. A. Division of labour in microorganisms: an evolutionary perspective. Nat. Rev. Microbiol. 14, 716–723 (2016).

    CAS  PubMed  Google Scholar 

  17. Arnold, K. E., Owens, I. P. & Goldizen, A. W. Division of labour within cooperatively breeding groups. Behaviour 142, 1577–1590 (2005).

    Google Scholar 

  18. Hamilton, W. D. The genetical evolution of social behaviour. I and II. J. Theor. Biol. 7, 1–52 (1964).

    CAS  PubMed  Google Scholar 

  19. Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).

    CAS  PubMed  Google Scholar 

  20. Gardner, A. & Grafen, A. Capturing the superorganism: a formal theory of group adaptation. J. Evol. Biol. 22, 659–671 (2009).

    CAS  PubMed  Google Scholar 

  21. Michod, R. E. Evolution of the individual. Am. Nat. 150, S5–S21 (1997).

    PubMed  Google Scholar 

  22. Frank, S. A. Foundations of Social Evolution. (Princeton Univ. Press: Princeton, 1998).

    Google Scholar 

  23. Parker, G. A. & Smith, J. M. Optimality theory in evolutionary biology. Nature 348, 27–33 (1990).

    Google Scholar 

  24. Fisher, R. M., Cornwallis, C. K. & West, S. A. Group formation, relatedness, and the evolution of multicellularity. Curr. Biol. 23, 1120–1125 (2013).

    CAS  PubMed  Google Scholar 

  25. Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).

    CAS  PubMed  Google Scholar 

  26. Herron, M. D., Hackett, J. D., Aylward, F. O. & Michod, R. E. Triassic origin and early radiation of multicellular volvocine algae. Proc. Natl Acad. Sci. USA 106, 3254–3258 (2009).

    CAS  PubMed  Google Scholar 

  27. Strassmann, J. E., Zhu, Y. & Queller, D. C. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408, 965–967 (2000).

    CAS  PubMed  Google Scholar 

  28. Velicer, G. J., Kroos, L. & Lenski, R. E. Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404, 598–601 (2000).

    CAS  PubMed  Google Scholar 

  29. Veening, J.-W. et al. Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol. Syst. Biol. 4, 184 (2008).

    PubMed  PubMed Central  Google Scholar 

  30. Herron, M. D. & Michod, R. E. Evolution of complexity in the volvocine algae: transitions in individuality through Darwin’s eye. Evolution 62, 436–451 (2008).

    PubMed  Google Scholar 

  31. Koenig, W. D. & Dickinson, J. L. Ecology and Evolution of Cooperative Breeding in Birds (Cambridge Univ. Press, Cambridge, 2004).

  32. Hughes, W. O., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).

    CAS  PubMed  Google Scholar 

  33. Cornwallis, C. K., West, S. A., Davis, K. E. & Griffin, A. S. Promiscuity and the evolutionary transition to complex societies. Nature 466, 969–972 (2010).

    CAS  PubMed  Google Scholar 

  34. Lukas, D. & Clutton-Brock, T. Cooperative breeding and monogamy in mammalian societies. Proc. R. Soc. B 279, 2151–2156 (2012).

    PubMed  Google Scholar 

  35. Bastiaans, E., Debets, A. J. & Aanen, D. K. Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters. Nat. Commun. 7, 11435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuzdzal-Fick, J. J., Fox, S. A., Strassmann, J. E. & Queller, D. C. High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 334, 1548–1551 (2011).

    CAS  PubMed  Google Scholar 

  37. Giron, D., Dunn, D. W., Hardy, I. C. & Strand, M. R. Aggression by polyembryonic wasp soldiers correlates with kinship but not resource competition. Nature 430, 676–679 (2004).

    CAS  PubMed  Google Scholar 

  38. Nonacs, P. Monogamy and high relatedness do not preferentially favor the evolution of cooperation. BMC Evol. Biol. 11, 58 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. Olejarz, J. W., Allen, B., Veller, C. & Nowak, M. A. The evolution of non-reproductive workers in insect colonies with haplodiploid genetics. eLife 4, e08918 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Leggett, H. C., El Mouden, C., Wild, G. & West, S. Promiscuity and the evolution of cooperative breeding. Proc. R. Soc. B 279, 1405–1411 (2012).

    PubMed  Google Scholar 

  41. Davies, N. G. & Gardner, A. Monogamy promotes altruistic sterility in insect societies. R. Soc. Open Sci. 5, 172190 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Gavrilets, S. Rapid transition towards the division of labor via evolution of developmental plasticity. PLoS Comput. Biol. 6, e1000805 (2010).

    PubMed  PubMed Central  Google Scholar 

  43. Lehmann, L. & Rousset, F. How life history and demography promote or inhibit the evolution of helping behaviours. Phil. Trans. R. Soc. B 365, 2599–2617 (2010).

    PubMed  Google Scholar 

  44. Seger, J. Partial bivoltinism may cause alternating sex-ratio biases that favour eusociality. Nature 301, 59–62 (1983).

    Google Scholar 

  45. Quiñones, A. E. & Pen, I. A unified model of hymenopteran preadaptations that trigger the evolutionary transition to eusociality. Nat. Commun. 8, 15920 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Bonner, J. T. Perspective: the size-complexity rule. Evolution 58, 1883–1890 (2004).

    CAS  PubMed  Google Scholar 

  47. Taylor, P. D. & Frank, S. A. How to make a kin selection model. J. Theor. Biol. 180, 27–37 (1996).

    CAS  PubMed  Google Scholar 

  48. Brown, S. P. & Taylor, P. D. Joint evolution of multiple social traits: a kin selection analysis. Proc. R. Soc. B 277, 415–422 (2010).

    PubMed  Google Scholar 

  49. Diard, M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the following people for helpful discussion and comments on the manuscript: S. Levin, M. dos Santos, J. Biernaskie, A. Griffin, C. Cornwallis, P. Taylor, K. Boomsma, D. Unterwegger, K. Foster, G. Wild, A. Grafen, G. Taylor, T. Kiers and R. Fisher. We acknowledge the use of the University of Oxford Advanced Research Computing (ARC) facility in carrying out this work. G.A.C. is funded by the Engineering and Physical Sciences Research Council (EP/F500394/1).

Author information

Authors and Affiliations

Authors

Contributions

G.A.C. carried out the modelling work. G.A.C. and S.A.W. conceived the study and wrote the paper. Both authors gave final approval for publication.

Corresponding author

Correspondence to Guy A. Cooper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures and Supplementary Tables

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, G.A., West, S.A. Division of labour and the evolution of extreme specialization. Nat Ecol Evol 2, 1161–1167 (2018). https://doi.org/10.1038/s41559-018-0564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0564-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing