Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The palaeoecological context of the Oldowan–Acheulean in southern Africa

Abstract

The influence of climatic and environmental change on human evolution in the Pleistocene epoch is understood largely from extensive East African stable isotope records. These records show increasing proportions of C4 plants in the Early Pleistocene. We know far less about the expansion of C4 grasses at higher latitudes, which were also occupied by early Homo but are more marginal for C4 plants. Here we show that both C3 and C4 grasses and prolonged wetlands remained major components of Early Pleistocene environments in the central interior of southern Africa, based on enamel stable carbon and oxygen isotope data and associated faunal abundance and phytolith evidence from the site of Wonderwerk Cave. Vegetation contexts associated with Oldowan and early Acheulean lithic industries, in which climate is driven by an interplay of regional rainfall seasonality together with global CO2 levels, develop along a regional distinct trajectory compared to eastern South Africa and East Africa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wonderwerk Cave.
Fig. 2: Enamel stable isotope results for the three most abundant tribes.
Fig. 3: Timeline and climate parameters of the past two million years.
Fig. 4: Mean δ 13C (‰) values for equids and Alcelaphini from sites in East and South Africa between 2 and 1 Ma.

Similar content being viewed by others

References

  1. deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    CAS  Google Scholar 

  2. Bobe, R. & Behrensmeyer, A. K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).

    Google Scholar 

  3. Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    CAS  PubMed  Google Scholar 

  4. Quinn, R. L. et al. Pedogenic carbonate stable isotopic evidence for wooded habitat preference of Early Pleistocene tool makers in the Turkana Basin. J. Hum. Evol. 65, 65–78 (2013).

    PubMed  Google Scholar 

  5. Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl Acad. Sci. USA 114, 7331–7336 (2017).

    CAS  PubMed  Google Scholar 

  6. Chazan, M. et al. The Oldowan horizon in Wonderwerk Cave (South Africa): archaeological, geological, paleontological and paleoclimate evidence. J. Hum. Evol. 63, 859–866 (2012).

    PubMed  Google Scholar 

  7. Chazan, M. Technological trends in the Acheulean of Wonderwerk Cave, South Africa. Afr. Archaeol. Rev. 32, 701–728 (2015).

    Google Scholar 

  8. Brink, J., Holt, S. & Horwitz, L. K. The Oldowan and early Acheulean mammalian fauna of Wonderwerk Cave (Northern Cape Province, South Africa). Afr. Archaeol. Rev. 33, 223–250 (2016).

    Google Scholar 

  9. Ecker, M., Botha-Brink, J., Piuz, A., Horwitz, L. K. & Lee-Thorp, J. A. in Changing Climates, Ecosystems and Environments Within Arid Southern Africa and Adjoining Regions: Palaeoecology of Africa Vol. 33 (ed. Runge, J.) 95–115 (CRC Press/Balkema, Leiden, 2015).

  10. Rossouw, L. An Early Pleistocene phytolith record from Wonderwerk Cave, Northern Cape, South Africa. Afr. Archaeol. Rev. 33, 251–263 (2016).

    Google Scholar 

  11. Fernandez-Jalvo, Y. & Avery, D. M. Pleistocene micromammals and their predators at Wonderwerk Cave, South Africa. Afr. Archaeol. Rev. 32, 751–791 (2015).

    Google Scholar 

  12. Ecker, M., Brink, J., Horwitz, L. K., Scott, L. & Lee-Thorp, J. A. A 12,000 year record of changes in herbivore niche separation and palaeoclimate (Wonderwerk Cave, South Africa). Quat. Sci. Rev. 180, 132–144 (2018).

    Google Scholar 

  13. Lee-Thorp, J. A. & Ecker, M. Holocene environmental change at Wonderwerk Cave, South Africa: insights from stable light isotopes in ostrich eggshell. Afr. Archaeol. Rev. 32, 793–811 (2015).

    Google Scholar 

  14. Toffolo, M. B., Brink, J. S., van Huyssteen, C. & Berna, F. A microstratigraphic reevaluation of the Florisbad spring site, Free State Province, South Africa: formation processes and paleoenvironment. Geoarchaeology 32, 456–478 (2017).

    Google Scholar 

  15. van Zinderen Bakker, E. M. The evolution of Late Quaternary palaeoclimates of southern Africa. Palaeoecol. Afr. 9, 160–202 (1976).

    Google Scholar 

  16. Lee-Thorp, J. A. & Beaumont, P. B. Vegetation and seasonality shifts during the Late Quaternary deduced from 13C/12C ratios of grazers at Equus Cave, South Africa. Quat. Res. 43, 426–432 (1995).

    Google Scholar 

  17. Chase, B. M. & Meadows, M. E. Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth Sci. Rev. 84, 103–138 (2007).

    Google Scholar 

  18. Matmon, A. et al. New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation. Quat. Res. 84, 118–132 (2015).

    Google Scholar 

  19. Goldberg, P., Berna, F. & Chazan, M. Deposition and diagenesis in the Earlier Stone Age at Wonderwerk Cave, excavation 1, South Africa. Afr. Archaeol. Rev. 32, 613–643 (2015).

    Google Scholar 

  20. Vainer, S., Erel, Y. & Matmon, A. Provenance and depositional environments of Quaternary sediments in the southern Kalahari Basin. Chem. Geol. 476, 352–369 (2018).

    CAS  Google Scholar 

  21. Lehmann, S. B. et al. Stable isotopic composition of fossil mammal teeth and environmental change in southwestern South Africa during the Pliocene and Pleistocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 396–408 (2016).

    Google Scholar 

  22. Walker, S. J. H., Lukich, V. & Chazan, M. Kathu Townlands: a high density Earlier Stone Age locality in the interior of South Africa. PLoS ONE 9, e103436 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Scott, L. Grassland development under glacial and interglacial conditions in southern Africa: review of pollen, phytolith and isotope evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177, 47–57 (2002).

    Google Scholar 

  24. Ford, H. L., Sosdian, S. M., Rosenthal, Y. & Raymo, M. E. Gradual and abrupt changes during the Mid-Pleistocene transition. Quat. Sci. Rev. 148, 222–233 (2016).

    Google Scholar 

  25. Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    PubMed  Google Scholar 

  26. Polley, H. W., Johnson, H. B. & Derner, J. D. Soil- and plant-water dynamics in a C3/C4 grassland exposed to a subambient CO2 gradient. Glob. Change Biol. 8, 1118–1129 (2002).

    Google Scholar 

  27. Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).

    CAS  PubMed  Google Scholar 

  28. Ward, J. K., Myers, D. A. & Thomas, R. B. Physiological and growth responses of C3 and C4 plants to reduced temperature when grown at low CO2 of the Last Ice Age. J. Integr. Plant Biol. 50, 1388–1395 (2008).

    CAS  PubMed  Google Scholar 

  29. Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the Mid-Pleistocene transition. Science 324, 1551–1554 (2009).

    PubMed  Google Scholar 

  30. Lee-Thorp, J. A., Sponheimer, M. & Luyt, J. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. J. Hum. Evol. 53, 595–601 (2007).

    PubMed  Google Scholar 

  31. Codron, D., Brink, J. S., Rossouw, L. & Clauss, M. The evolution of ecological specialization in southern African ungulates: competition- or physical environmental turnover? Oikos 117, 344–353 (2008).

    Google Scholar 

  32. Hopley, P. J. et al. Orbital forcing and the spread of C4 grasses in the Late Neogene: stable isotope evidence from South African speleothems. J. Hum. Evol. 53, 620–634 (2007).

    PubMed  Google Scholar 

  33. Luyt, C. J. & Lee-Thorp, J. A. Carbon isotope ratios of Sterkfontein fossils indicate a marked shift to open environments c. 1.7 Myr ago. S. Afr. J. Sci. 99, 271–273 (2003).

    CAS  Google Scholar 

  34. Luyt, J., Lee-Thorp, J. A. & Avery, G. New light on Middle Pleistocene west coast environments from Elandsfontein, Western Cape Province, South Africa. S. Afr. J. Sci. 96, 399–403 (2000).

    Google Scholar 

  35. Hare, V. & Sealy, J. Middle Pleistocene dynamics of southern Africa’s winter rainfall zone from δ13C and δ18O values of Hoedjiespunt faunal enamel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 72–80 (2013).

    Google Scholar 

  36. Robinson, J. R., Rowan, J., Campisano, C. J., Wynn, J. G. & Reed, K. E. Late Pliocene environmental change during the transition from Australopithecus to Homo. Nat. Ecol. Evol. 1, 0159 (2017).

    Google Scholar 

  37. Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl Acad. Sci. USA 112, 11467–11472 (2015).

    CAS  PubMed  Google Scholar 

  38. Plummer, T. W. et al. in Interdisciplinary Approaches to the Oldowan (eds Hovers, E. & Braun, D. R.) 149–160 (Springer, Dordrecht, 2009).

  39. van der Merwe, N. J., Cushing, A. & Blumenschine, R. Stable isotope ratios of fauna and the environment of palaeolake Olduvai. J. Hum. Evol. 34, A24–A25 (1999).

    Google Scholar 

  40. Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).

    Google Scholar 

  41. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

    Google Scholar 

  42. Mucina, L. & Rutherford, M. C. The Vegetation of South Africa, Lesotho and Swaziland (South African National Biodiversity Institute, 2006).

  43. Lisiecki, L. E. & Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

  44. Indermühle, A. et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126 (1999).

    Google Scholar 

  45. Smith, H. J., Fischer, H., Wahlen, M., Mastroianni, D. & Deck, B. Dual modes of the carbon cycle since the Last Glacial Maximum. Nature 400, 248–250 (1999).

    CAS  PubMed  Google Scholar 

  46. Indermühle, A. et al. Early Holocene atmospheric CO2 concentrations. Science 286, 1815 (1999).

    Google Scholar 

  47. Barnola, J.-M., Raynaud, D., Lonus, C. & Barkov, N. I. Historical CO2 record from the Vostok ice core. In Trends: A Compendium of Data on Global Change Carbon Dioxide (Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, 2003).

  48. Siegenthaler, U. et al. Stable carbon cycle–climate relationship during the Late Pleistocene. Science 310, 1313–1317 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Morris (McGregor Museum, Kimberley) for granting permission for stable isotope sampling and to A. Gledhill (University of Bradford) for stable isotope measurements. All enamel samples were exported under a South African Heritage Resources Agency (SAHRA) permit (Permit ID 1898). M.E. received funding from the German Academic Exchange Service (DAAD), the Boise Fund Trust (University of Oxford) and the Quaternary Research Association (QRA). Research at Wonderwerk Cave, including on the fauna used in this study, is funded by grants from the Canadian Social Science and Humanities Research Council to M.C. We thank L. Scott for his invaluable input.

Author information

Authors and Affiliations

Authors

Contributions

M.E., L.K.H., M.C. and J.L.-T. were responsible for research design and M.E. conducted the stable isotope analysis. J.S.B., L.K.H. and L.R. provided material and data. All authors contributed to discussions and writing of the manuscript and approved the final version.

Corresponding author

Correspondence to Michaela Ecker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, figures, tables and references

Reporting Summary

Supplementary Data

Carbon and oxygen stable isotope measurements for herbivore enamel samples of Stratum 12–5 (Exc. 1) and Stratum 2 (Exc. 2), indicating specimen number, species, origin and tooth type

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ecker, M., Brink, J.S., Rossouw, L. et al. The palaeoecological context of the Oldowan–Acheulean in southern Africa. Nat Ecol Evol 2, 1080–1086 (2018). https://doi.org/10.1038/s41559-018-0560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0560-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing