Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Legume abundance along successional and rainfall gradients in Neotropical forests

Abstract

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Absolute and relative basal area of legume species in Neotropical secondary forests.
Fig. 2: Legume relative basal area across a rainfall gradient in the Neotropics.
Fig. 3: Relative basal area of legumes for 5- and 20-year-old forests as a function of mean annual rainfall.

References

  1. Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? (FAO, Rome, 2015).

  2. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  PubMed  Article  Google Scholar 

  3. Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2017).

    Article  CAS  Google Scholar 

  4. Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, S150–S163 (2004).

    Article  Google Scholar 

  5. Cleveland, C. C. et al. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl Acad. Sci. USA 110, 12733–12737 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).

    CAS  PubMed  Article  Google Scholar 

  7. Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165, 511–520 (2010).

    PubMed  Article  Google Scholar 

  8. Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 1–9 (2015).

    CAS  Article  Google Scholar 

  9. ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).

    PubMed  Article  CAS  Google Scholar 

  10. DRYFLOR Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353, 1383–1387 (2016).

  11. Oliveira-Filho, A. T. et al. Stability structures tropical woody plant diversity more than seasonality: insights into the ecology of high legume-succulent-plant biodiversity. S. Afr. J. Bot. 89, 42–57 (2013).

    Article  Google Scholar 

  12. Pellegrini, A. F. A., Staver, A. C., Hedin, L. O., Charles-Dominique, T. & Tourgee, A. Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes. Ecology 97, 2177–2183 (2016).

    PubMed  Article  Google Scholar 

  13. Gehring, C., Muniz, F. H., & Gomes de Souza, L. A. Leguminosae along 2–25 years of secondary forest succession after slash-and-burn agriculture and in mature rain forest of central Amazonia. J. Torre. Bot. Soc. 135, 388–400 (2008).

    Article  Google Scholar 

  14. Sullivan, B. W. et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc. Natl Acad. Sci. USA 111, 8101–8106 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Menge, D. N. L. & Chazdon, R. L. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests. New Phytol. 209, 965–977 (2015).

    PubMed  Article  CAS  Google Scholar 

  16. Bauters, M., Mapenzi, N., Kearsley, E., Vanlauwe, B. & Boeckx, P. Facultative nitrogen fixation by legumes in the central Congo Basin is downregulated during late successional stages. Biotropica 48, 281–284 (2016).

    Article  Google Scholar 

  17. Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Bongers, F. & Poorter, L. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91, 386–398 (2010).

    PubMed  Article  Google Scholar 

  18. Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

    CAS  PubMed  Article  Google Scholar 

  19. Vitousek, P. M. et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1–45 (2002).

    Article  Google Scholar 

  20. Wurzburger, N. & Ford Miniat, C. Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. Oecologia 174, 1117–1126 (2013).

    PubMed  Article  Google Scholar 

  21. Adams, M. A., Turnbull, T. L., Sprent, J. I. & Buchmann, N. Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Menge, D. N. L., Levin, S. A. & Hedin, L. O. Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. Am. Nat. 174, 465–477 (2009).

    PubMed  Article  Google Scholar 

  23. Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat. Plants 1, 15182 (2015).

    CAS  Article  PubMed  Google Scholar 

  24. Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    CAS  PubMed  Article  Google Scholar 

  25. Hijmans, R. J., Cameron, S. E., Parra, J. L., P. Jones, G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  26. Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).

    Article  Google Scholar 

  27. Vico, G., Dralle, D., Feng, X., Thompson, S., & Manzoni, S. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach. Environ. Res. Lett. 12, 065006 (2017).

    Article  Google Scholar 

  28. Slik, J. W. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837–1842 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  29. Pennington, R. T., Lavin, M. & Oliveira-Filho, A. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40, 437–457 (2009).

    Article  Google Scholar 

  30. Hughes, C. E., Pennington, R. T. SpringerAmpamp; Antonelli, A. Neotropical plant evolution: assembling the big picture. Bot. J. Linn. Soc. 171, 1–18 (2013).

    Article  Google Scholar 

  31. Sprent, J. I. Legume Nodulation: A Global Perspective (Wiley-Blackwell, Oxford, 2009).

    Book  Google Scholar 

  32. Leigh, A., Sevanto, S., Close, J. D. & Nicotra, A. B. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? Plant Cell Environ. 40, 237–248 (2017).

    CAS  PubMed  Article  Google Scholar 

  33. Parkhurst, D. F. & Loucks, O. L. Optimal leaf size in relation to environment. J. Ecol. 60, 505–537 (1972).

    Article  Google Scholar 

  34. Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).

    CAS  PubMed  Article  Google Scholar 

  35. Givnish, T. J. in Tropical Trees as Living Systems (eds Tomlinson, P. B. & Zimmerman, M. H.) 351–380 (Cambridge Univ. Press, New York, 1978).

  36. Liao, W., Menge, D. N. L., Lichstein, J. W., & Ángeles-Pérez, G. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America. Glob. Change Biol. 23, 4777–4787 (2017).

    Article  Google Scholar 

  37. Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).

    CAS  PubMed  Article  Google Scholar 

  38. Powers, J. S. & Marín-Spiotta, E. Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 48, 497–519 (2017).

    Article  Google Scholar 

  39. Winbourne, J. B., Feng, A., Reynolds, L., Piotto, D., Hastings, M. G. & Porder, S. Nitrogen cycling during secondary succession in Atlantic Forest of Bahia, Brazil. Sci. Rep. 8, 1377 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Lodge, M. M., McDowell, W. H. & McSwiney, C. P. The importance of nutrient pulses in tropical forests. Trends Ecol. Evol. 9, 384–387 (1994).

    CAS  PubMed  Article  Google Scholar 

  41. Minucci, J. M., Miniat, C. F., Teskey, R. O. & Wurzburger, N. Tolerance or avoidance: drought frequency determines the response of an N2-fixing tree. New Phytol. 215, 434–442 (2017).

    CAS  Article  PubMed  Google Scholar 

  42. Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L. & Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 27, 477–489 (2011).

    Article  Google Scholar 

  43. Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).

    Article  Google Scholar 

  44. van Zanten, M., Pons, T. L., Janssen, J. A. M., Voesenek, L. A. C. J. & Peeters, A. J. M. On the relevance and control of leaf angle. Crit. Rev. Plant Sci. 29, 300–316 (2010).

    Article  Google Scholar 

  45. Legume Phylogeny Working Group A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44–77 (2017).

    Article  Google Scholar 

  46. Legume Phylogeny Working Group Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62, 217–248 (2013).

    Article  Google Scholar 

  47. Schrire, B. D., Lavin, M. & Lewis, G.P. in Plant Diversity and Complexity Patterns: Local, Regional and Global Dimensions Biologiske Skrifter Vol. 55 (eds Friis, I. & Balslev, H.) 375–422 (The Royal Danish Academy of Sciences and Letters, Copenhagen, 2005).

  48. Derroire, G., Tigabu, M., Odén, P. C. & Healey, J. R. The effects of established trees on woody regeneration during secondary succession in tropical dry forests. Biotropica 48, 290–300 (2016).

    Article  Google Scholar 

  49. Taylor, B. N., Chazdon, R. L., Bachelot, B. & Menge, D. N. Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests. Proc. Natl Acad. Sci. USA 114, 8817–8822 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. Nasto, M. K. et al. Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecol. Lett. 17, 1282–1289 (2014).

    PubMed  Article  Google Scholar 

  51. Barron, A. R. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat. Geosci. 2, 42–45 (2008).

    Article  CAS  Google Scholar 

  52. Winbourne, J. B., Brewer, S. W. & Houlton, B. Z. Iron controls over di-nitrogen fixation in karst tropical forest. Ecology 98, 773–781 (2017).

    PubMed  Article  Google Scholar 

  53. Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811–815 (2013).

    Article  Google Scholar 

  54. Kew Herbarium Catalogue (Royal Botanic Gardens Kew, accessed 2016); http://apps.kew.org/herbcat/

  55. Tropicos (Missouri Botanical Garden, accessed 2016); http://www.tropicos.org/

  56. Neotropical Herbarium Specimens (The Field Museum, accessed 2016); http://fm1.fieldmuseum.org/vrrc/

  57. OTS Plant Database (Organization for Tropical Studies, accessed 2016); https://tropicalstudies.org/index.php?option=com_wrapper&Itemid=497

  58. The Arizona–New Mexico Chapter of the Southwest Environmental Information Network (SEINet, accessed 2016); http://swbiodiversity.org/seinet/

  59. Rozendaal, D. M. A., Hurtado, V. H. & Poorter, L. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Funct. Ecol. 20, 207–216 (2006).

    Article  Google Scholar 

  60. Markesteijn, L., Poorter, L. & Bongers, F. Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am. J. Bot. 94, 515–525 (2007).

    PubMed  Article  Google Scholar 

  61. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2012).

    Article  Google Scholar 

  62. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

    Google Scholar 

Download references

Acknowledgements

This paper is a product of the 2ndFOR collaborative research network on secondary forests. We thank the owners of the sites for access to their forests, the people who have established and measured the plots, and the institutions and funding agencies that supported them. This study was partly funded by a University of Minnesota Grant-in-Aid to J.S.P. that supported M.G. We thank the University of Minnesota Herbarium and A. Cholewa for access to herbarium collections, and S. St. George, C. Cleveland and P. Tiffin for comments. Additional funding was provided by Secretaría de Educación Pública-Consejo Nacional de Ciencia y Tecnología, Ciencia Básica (SEP-CONACYT: CB-2009-128136, CB-2015-255544), Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, Universidad Nacional Autónoma de México (PAPIIT-UNAM: 218416, 211114, IN212617), United States Agency for International Development BOLFOR Project, Andrew Mellon Foundation, United States National Science Foundation (Division of Environmental Biology: DEB-0129104, DEB-1050957, DEB-1053237, DEB-9208031, DEB-0424767, DEB-0639393, DEB-1147429, DEB-0129104, 10-02586, DEB-1313788), National Science Foundation CAREER Behavioral and Cognitive Sciences 1349952, National Science Foundation Geosciences GEO-1128040, United States Department of Energy (Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science Program award number DE-SC0014363), United States National Aeronautics and Space Agency Terrestrial Ecology Program, the University of Connecticut Research Foundation, Tropi-Dry - a collaborative Research Network funded by the Inter-American Institute for Global Change Research (IAI CRN3-025, IAI CRN3035) under the US National Sciences Foundation, the National Science and Research Council of Canada (NSERC) Discovery Grant Program, Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Instituto Internacional de Educação do Brasil, Netherlands Organization for Cooperation in Higher Education, Interdisciplinary Research and Education Fund (Wageningen University) Terra Preta and FOREFRONT Programmes, Secretaria Nacional de Ciencia, Tecnologia e Innovacion, Panama (SENACYT: International Collaboration grant, COL10-052), Fondo Mixto Consejo Nacional de Ciencia y Tecnología - Gobierno del Estado de Yucatán (Yuc-2008-C06-108863), El Consejo de Ciencia y Technologia Grant 33851-B, São Paulo Research Foundation (FAPESP; grants #2013/50718-5, #2011/14517-0, #2014/14503-7, 2011/06782-5 and 2014/14503-7), Coordination for the Improvement of Higher Education Personnel of Brazil (CAPES; grant #88881.064976/2014-01), the National Council for Scientific and Technological Development of Brazil (CNPq; grant #304817/2015-5, 306375/2016-8, 563304/2010-3, 308471/2017-2), El Consejo de Ciencia y Technologia Grant 33851-B, Stichting Het Kronendak, Stichting Tropenbos, Center for International Forestry Research, Norwegian Agency for Development Cooperation (Norad), International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation, and Building and Nuclear Safety (BMUB), Yale-NUS College grant R-607-265-054-121, Heising-Simons Foundation, Hoch Family, Silicon Valley Foundation, Stanley Motta, Smithsonian Tropical Research Institute and the Grantham Foundation for the Environment.

Author information

Authors and Affiliations

Authors

Contributions

M.G. and J.S.P. conceived the idea, all co-authors coordinated the data compilations, M.G. and M.D.G. collected leaf traits data, M.G. analysed the data, D.M.A.R. contributed to the analytical approach, M.G. and J.S.P. wrote the paper, and all co-authors collected field data, discussed the results, gave suggestions for further analyses and commented on the manuscript.

Corresponding author

Correspondence to Jennifer S. Powers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 2, 4, 5 and 6, Supplementary References

Reporting Summary

Supplementary Table 1

Metadata associated with 2ndFOR sites in the neotropics

Supplementary Table 3

List of 398 Leguminosae species present in 42 neotropical chronosequences, their current (and previous) subfamily classification, their potential to form symbioses with N-fixing bacteria, leaf type, and average (and standard deviation) leaflet length and width (cm)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gei, M., Rozendaal, D.M.A., Poorter, L. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat Ecol Evol 2, 1104–1111 (2018). https://doi.org/10.1038/s41559-018-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0559-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing