Perspective | Published:

Human activities might influence oncogenic processes in wild animal populations

Nature Ecology & Evolutionvolume 2pages10651070 (2018) | Download Citation

Abstract

Based on the abundant studies available on humans showing clear associations between rapid environmental changes and the rate of neoplasia, we propose that human activities might increase cancer rate in wild populations through numerous processes. Most of the research on this topic has concentrated on wildlife cancer prevalence in environments that are heavily contaminated with anthropogenic chemicals. Here, we propose that human activities might also increase cancer rate in wild populations through additional processes including light pollution, accidental (for example, human waste) or intentional (for example, bird feeders) wildlife feeding (and the associated change of diet), or reduction of genetic diversity in human-impacted habitats. The human species can thus be defined as an oncogenic species, moderating the environment in the way that it causes cancer in other wild populations. As human impacts on wildlife are predicted to increase rather than decrease (for example, in the context of urbanization), acknowledging the possible links between human activity and cancer in wild populations is crucial.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Pellegriti, G., Frasca, F., Regalbuto, C., Squarito, S. & Vigneri, R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J. Cancer Epidemiol. 2013, 965212 (2013).

  2. 2.

    Chaturvedi, A. K. et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J. Clin. Oncol. 31, 4550–4559 (2013).

  3. 3.

    Hochberg, M. E. & Noble, R. J. A framework for how environment contributes to cancer risk. Ecol. Lett. 20, 117–134 (2017).

  4. 4.

    Madsen, T. et al. in Ecology and Evolution of Cancer (eds Ujvari, B., Roche, B. & Thomas, F.) 11–46 (Academic Press, London, 2017).

  5. 5.

    Martineau, D. et al. Pathology and toxicology of beluga whales from the St. Lawrence Estuary, Quebec, Canada. Past, present and future. Environ. Health Perspect. 110, 285–292 (2002).

  6. 6.

    Moller, A. P., Bonisoli-Alquati, A. & Mousseau, T. A. High frequency of albinism and tumours in free-living birds around Chernobyl. Mut. Res.-Gen. Tox. En. 757, 52–59 (2013).

  7. 7.

    Randhawa, N., Gulland, F., Ylitalo, G. M., Delong, R. & Mazet, J. A. Sentinel California sea lions provide insight into legacy organochlorine exposure trends and their association with cancer and infectious disease. One Health 1, 37–43 (2015).

  8. 8.

    Navarro, C., De Lope, F., Marzal, A. & Møller, A. P. Predation risk, host immune response, and parasitism. Behav. Ecol. 15, 629–635 (2004).

  9. 9.

    Vittecoq, M. et al. Turning oncogenic factors into an ally in the war against cancer. Trends Ecol. Evol. 28, 628–635 (2013).

  10. 10.

    Loomis, D. et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 14, 1262–1263 (2013).

  11. 11.

    Hamra, G. B. et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ. Health Perspect. 122, 906–911 (2014).

  12. 12.

    McAloose, D. & Newton, A. L. Wildlife cancer: a conservation perspective. Nat. Rev. Cancer 9, 517–526 (2009).

  13. 13.

    Martel, L., Gagnon, M. J., Masse, R., Leclerc, A. & Tremblay, L. Polycyclic aromatic hydrocarbons in sediments from the Saguenay Fjord, Canada. Bull. Environ. Contam. Toxicol. 37, 133–140 (1986).

  14. 14.

    Black, J. J. & Baumann, P. C. Carcinogens and cancers in freshwater fishes. Environ. Health Perspect. 90, 27–33 (1991).

  15. 15.

    Brown, E. R. et al. Frequency of fish tumors found in a polluted watershed as compared to nonpolluted Canadian waters. Cancer Res. 33, 189–198 (1973).

  16. 16.

    Hinton, D. E. et al. Resolving mechanisms of toxicity while pursuing ecotoxicological relevance? Mar. Pollut. Bull. 51, 635–648 (2005).

  17. 17.

    Fisk, A. T. et al. An assessment of the toxicological significance of anthropogenic contaminants in Canadian Arctic wildlife. Sci. Total Environ. 351, 57–93 (2005).

  18. 18.

    Tabb, M. & Blumberg, B. New modes of action for endocrine disrupting chemicals. Mol. Endocrinol. 20, 475–482 (2006).

  19. 19.

    Serdar, B., Leblanc, W. G., Norris, J. M. & Dickinson, L. M. Potential effects of polychlorinated biphenyls (PCBs) and selected organochlorine pesticides (OCPs) on immune cells and blood biochemistry measures: a cross-sectional assessment of the NHANES 2003-2004 data. Environ. Health 13, 114 (2014).

  20. 20.

    Ylitalo, G. M. et al. The role of organochlorines in cancer-associated mortality in California sea lions (Zalophus calif ornianus). Mar. Pollut. Bull. 50, 30–39 (2005).

  21. 21.

    Noshchenko, A. G., Bondar, O. Y. & Drozdova, V. D. Radiation-induced leukemia risk among those aged 0–20 at the time of the Chernobyl accident: a case-control study in the Ukraine. Int. J. Cancer 127, 412–426 (2010).

  22. 22.

    Tondel, M., Lindgren, P., Hjalmarsson, P., Hardell, L. & Persson, B. Increased incidence of malignancies in Sweden after the Chernobyl accident – a promoting effect? Am. J. Ind. Med. 49, 159–168 (2006).

  23. 23.

    Yamashita, S. & Thomas, G. (eds) Thyroid Cancer and Nuclear Accidents: Long-Term Effects of Chernobyl and Fukushima (Academic Press, 2017).

  24. 24.

    Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Phil. Trans. R. Soc. B 364, 2027–2045 (2009).

  25. 25.

    Doherty, L. F., Bromer, J. G., Zhou, Y., Aldad, T. S. & Taylor, H. S. In utero exposure to diethylstilbestrol (DES) orbisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism link in gendocrine disruptors to breast cancer. Horm. Cancer 1, 146–155 (2010).

  26. 26.

    Tarapore, P. et al. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS ONE 9, e90332 (2014).

  27. 27.

    Weinhouse, C. Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environ. Health Perspect. 122, 485–491 (2014).

  28. 28.

    Erren, T., Zeuß, D., Steffany, F. & Meyer-Rochow, B. Increase of wildlife cancer: an echo of plastic pollution? Nat. Rev. Cancer 9, 842–842 (2009).

  29. 29.

    Ndong, J. R., Blanchet, P. & Multigner, L. Pesticides and prostate cancer: epidemiological data. Bull. Cancer 96, 171–180 (2009).

  30. 30.

    Settimi, L., Masina, A., Andrion, A. & Axelson, O. Prostate cancer and exposure to pesticides in agricultural settings. Int. J. Cancer 104, 458–461 (2003).

  31. 31.

    Parron, T., Alarcon, R., Requena, M. D. M. & Hernandez, A. Increased breast cancer risk in women with environmental exposure to pesticides. Toxicol. Lett. 196, S180 (2010).

  32. 32.

    Alavanja, M. C., Ross, M. K. & Bonner, M. R. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J. Clin. 63, 120–142 (2013).

  33. 33.

    Chepesiuk, R. Missing the dark: health effects of light pollution. Environ. Health Perspect. 117, A20–A27 (2009).

  34. 34.

    Blask, D. E. et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res. 65, 11174–11184 (2005).

  35. 35.

    Hardeland, R., Pandi-Perumal, S. R. & Cardinali, D. P. Melatonin. Int. J. Biochem. Cell Biol. 38, 313–316 (2006).

  36. 36.

    Dauchy, R. T. et al. Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comp. Med. 60, 348–356 (2010).

  37. 37.

    Li, Y. et al. Melatonin for the prevention and treatment of cancer. Oncotarget 8, 39896–39921 (2017).

  38. 38.

    Russart, K. L. G. & Nelson, R. J. Light at night as an environmental endocrine disruptor. Physiol. Behav. 190, 82–89 (2018).

  39. 39.

    Raap, T., Pinxten, R. & Eens, M. Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period, and is followed by a sleep rebound. Environ. Pollut. 215, 125–134 (2016).

  40. 40.

    Roche, B., Møller, A. P., Degregori, J. & Thomas, F. in Ecology and Evolution of Cancer (eds Ujvari, B., Roche, B. & Thomas, F.) 181–191 (Academic Press, London, 2017).

  41. 41.

    Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: does city living lead to slower pace of life? Glob. Change Biol. 24, 1452–1469 (2018).

  42. 42.

    Reale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Phil. Trans. R. Soc. B 365, 4051–4063 (2010).

  43. 43.

    Simopoulos, A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365–379 (2002).

  44. 44.

    Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: a review and management recommendations. Biol. Conserv. 204, 163–174 (2016).

  45. 45.

    Fischer, J. R., Jain, A. V., Shipes, D. A. & Osborne, J. S. Aflatoxin contamination of corn used as bait for deer in the southeastern United States. J. Wildl. Dis. 31, 570–572 (1995).

  46. 46.

    Oberheu, D. G. & Dabbert, C. B. Aflatoxin production in supplemental feeders provided for northern bobwhite in Texas and Oklahoma. J. Wildl. Dis. 37, 475–480 (2001).

  47. 47.

    Zain, M. E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 15, 129–144 (2011).

  48. 48.

    Quist, C. F. et al. Evaluation of low-level aflatoxin in the diet of white-tailed deer. J. Wildl. Dis. 33, 112–121 (1997).

  49. 49.

    Blanco, G., Junza, A., Segarra, D., Barbosa, J. & Barrón, D. Wildlife contamination with fluoroquinolones from livestock: widespread occurrence of enrofloxacin and marbofloxacin in vultures. Chemosphere 144, 1536–1543 (2016).

  50. 50.

    Mäkinen, M., Forbes, P. D. & Stenbäck, F. Quinolone antibacterials: a new class of photochemical carcinogens. J. Photochem. Photobiol. B 37, 182–187 (1997).

  51. 51.

    Knapp, C. R. et al. Physiological effects of tourism and associated food provisioning in an endangered iguana. Conserv. Physiol. 1, cot032 (2013).

  52. 52.

    Felton, A. M. et al. Interactions between ungulates, forests, and supplementary feeding: the role of nutritional balancing in determining outcomes. Mammal. Res. 62, 1–7 (2017).

  53. 53.

    Gnagnarella, P., Gandini, S., La Vecchia, C. & Maisonneuve, P. Glycemic index, glycemic load, and cancer risk: a meta-analysis. Am. J. Clin. Nutr. 87, 1793–1801 (2008).

  54. 54.

    Cust, A. E. et al. Total dietary carbohydrate, sugar, starch and fibre intakes in the European prospective investigation into cancer and nutrition. Eur. J. Clin. Nutr. 63, S37–S60 (2007).

  55. 55.

    Ferrari, P. et al. Dietary fiber intake and risk of hormonal receptor-defined breast cancer in the European prospective investigation into cancer and nutrition study. Am. J. Clin. Nutr. 97, 344–353 (2013).

  56. 56.

    Ames, B. N. & Wakimoto, P. Are vitamin and mineral deficiencies a major cancer risk? Nat. Rev. Cancer 2, 694–704 (2002).

  57. 57.

    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife-pathogen dynamics: a review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).

  58. 58.

    Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).

  59. 59.

    Herrera-Dueñas, A., Pineda-Pampliega, J., Antonio-García, M. T. & Aguirre, J. I. The influence of urban environments on oxidative stress balance: a case study on the house sparrow in the Iberian Peninsula. Front. Ecol. Evol. 5, 106 (2017).

  60. 60.

    Teyssier, A. et al. Inside the guts of the city: urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).

  61. 61.

    Kakumanu, M. L. et al. Honey bee gut microbiome is altered by in-hive pesticide exposures. Front. Microbiol. 7, 1255 (2016).

  62. 62.

    Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).

  63. 63.

    Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).

  64. 64.

    Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. Elife 16, 4 (2015).

  65. 65.

    Stothart, M. R. et al. Stress and the microbiome: linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).

  66. 66.

    Gomez, A. et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol. Ecol. 24, 2551–2565 (2015).

  67. 67.

    Chang, C. W., Huang, B. H., Lin, S. M., Huang, C. L. & Liao, P. C. Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiol. 16, 33 (2016).

  68. 68.

    Altizer, S. et al. Food for contagion: synthesis and future directions for studying host-parasite responses to resource shifts in anthropogenic environments. Phil. Trans. R. Soc. B 373, 20170102 (2018).

  69. 69.

    Roy, S. & Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer 17, 271–285 (2017).

  70. 70.

    Bhatt, A. P., Redinbo, M. R. & Bultman, S. J. The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 67, 326–344 (2017).

  71. 71.

    Wilcoxen, T. E. et al. Effects of bird-feeding activities on the health of wild birds. Conserv. Physiol 3, cov058 (2015).

  72. 72.

    Ujvari, B. et al. Genetic diversity, inbreeding and cancer. Proc. R. Soc. B 285, 20172589 (2018).

  73. 73.

    Smith, S. & Hughes, J. Microsatellite and mitochondrial DNA variation defines island genetic reservoirs for reintroductions of an endangered Australian marsupial, Perameles bougainville. Conserv. Genet. 9, 547 (2007).

  74. 74.

    Joslin, J. O. et al. Viral papilloma and squamous cell carcinomas in snow leopards (Uncia uncia). In: Proc. Am. Assoc. Zoo Vet./Int. Assoc. Aquatic Anim. Med. Joint Conf. 155–158 (IAAAM, 2000).

  75. 75.

    Szpiech, Z. A. Long runs of homozygosity are enriched for deleterious variation. Am. J. Hum. Genet. 93, 90–102 (2013).

  76. 76.

    Hosking, F. J. et al. Genome-wide homozygosity signatures and childhood acute lymphoblastic leukemia risk. Blood 115, 4472–4477 (2010).

  77. 77.

    Denic, S., Frampton, C. & Nicholls, M. G. Risk of cancer in an inbred population. Cancer Detect. Prev. 31, 263–269 (2007).

  78. 78.

    Hu, Y. et al. Earliest evidence for commensal processes of cat domestication. Proc. Natl Acad. Sci. USA 111, 116–120 (2014).

  79. 79.

    Marsden, C. D. et al. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl Acad. Sci. USA 113, 152–157 (2016).

  80. 80.

    Vascellari, M., Baioni, E., Ru, G., Carminato, A. & Mutinelli, F. Animal tumour registry of two provinces in northern Italy: incidence of spontaneous tumours in dogs and cats. BMC Vet. Res. 5, 39 (2009).

  81. 81.

    Browning, H. M., Gulland, F. M. D., Colegrove, K. M. & Hall, A. J. Common cancer in a wild animal: the California sea lion (Zalophus californianus) as an emerging model for carcinogenesis. Phil. Trans. R. Soc. B 370, 20140228 (2015).

  82. 82.

    Funk, W. C. et al. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol. Ecol. 25, 2176–2194 (2016).

  83. 83.

    Vickers, T. W. et al. Pathology and epidemiology of ceruminous gland tumors among endangered Santa Catalina Island foxes (Urocyon littoralis catalinae) in the Channel Islands. PLoS ONE 10, e0143211 (2015).

  84. 84.

    Sasidharan, S. P. et al. Comparative genetics of sarcoid tumour-affected and non-affected mountain zebra (Equus zebra) populations. S. Afr. J. Wildl. Res. 41, 36–49 (2011).

  85. 85.

    Jacqueline, C. et al. Infections and cancer: the “fifty shades of immunity” hypothesis. BMC Cancer 17, 257 (2017).

  86. 86.

    Lebarbenchon, C., Brown, S. P., Poulin, R., Gauthier-Clerc, M. & Thomas, F. Evolution of pathogens in a man‐made world. Mol. Ecol. 17, 475–484 (2008).

  87. 87.

    Lambert, M. J. & Portfors, C. V. Adaptive sequence convergence of the tumor suppressor ADAMTS9 between small-bodied mammals displaying exceptional longevity. Aging 9, 573–582 (2017).

  88. 88.

    Moret, Y. & Schmid-Hempel, P. Immune defence in bumble-bee offspring. Nature 414, 506–506 (2001).

  89. 89.

    Thomas, F. et al. Malignant cells, an underappreciated component of animal evolutionary ecology. Nat. Ecol. Evol. 1, 1592–1595 (2017).

  90. 90.

    Sorvari, J., Rantala, L. M., Rantala, M. J., Hakkarainen, H. & Eeva, T. Heavy metal pollution disturbs immune response in wild ant populations. Environ. Pollut. 145, 324–328 (2007).

  91. 91.

    Eeva, T., Belskii, E. & Kuranov, B. Environmental pollution affects genetic diversity in wild bird populations. Mutat. Res. 608, 8–15 (2006).

  92. 92.

    Feist, S. W., Stentiford, G. D., Kent, M. L., Ribeiro Santos, A. & Lorance, P. Histopathological assessment of liver and gonad pathology in continental slope fish from the northeast Atlantic Ocean. Mar. Environ. Res. 106, 42–50 (2015).

  93. 93.

    Troïanowski, M., Mondy, N., Dumet, A., Arcanjo, C. & Lengagne, T. Effects of traffic noise on tree frog stress levels, immunity, and color signaling. Conserv. Biol. 31, 1132–1140 (2017).

  94. 94.

    Bedrosian, T. A., Fonken, L. K., Walton, J. C. & Nelson, R. J. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biol. Lett. 7, 468–471 (2011).

  95. 95.

    Morris, K. M., Wright, B., Grueber, C. E., Hogg, C. & Belov, K. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii). Mol. Ecol. 24, 3860–3872 (2015).

  96. 96.

    Van Straalen, N. M. & Timmermans, M. J. T. M. Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum. Ecol. Risk Assess. 8, 983–1002 (2002).

  97. 97.

    Turner, A. K., Begon, M., Jackson, J. A., Bradley, J. E. & Paterson, S. Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet. 7, e1002343 (2011).

  98. 98.

    Marechal, L., Semple, S., Majolo, B., Qarroc, M., Heistermann, M. & MacLarnona, A. Impacts of tourism on anxiety and physiological stress levels in wild male Barbary macaques. Biol. Conserv. 144, 2188–2193 (2011).

  99. 99.

    Moreno-Smith, M., Lutgendorf, S. K. & Sood, A. K. Impact of stress on cancer metastasis. Future Oncol. 6, 1863–1881 (2010).

  100. 100.

    Penn, I. & Starzl, T. E. Immunosuppression and cancer. Transplant. Proc. 5, 943–947 (1973).

  101. 101.

    Tomlinson, I. P. M., Novelli, M. R. & Bodmer, W. F. The mutation rate and cancer. Proc. Natl Acad. Sci. USA 93, 14800–14803 (1996).

  102. 102.

    Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Rad. Biol. Med. 49, 1603–1616 (2010).

  103. 103.

    Zur Hausen, H. & De Villiers, E. M. Cancer “causation” by infections—individual contributions and synergistic networks. Semin. Oncol. 42, 207–222 (2014).

  104. 104.

    Vucenik, I. & Stains, J. P. Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann. NY Acad. Sci. 1271, 37–43 (2012).

  105. 105.

    Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

Download references

Author information

Author notes

  1. These authors contributed equally: Mathieu Giraudeau, Tuul Sepp.

Affiliations

  1. School of Life Sciences, Arizona State University, Tempe, AZ, USA

    • Mathieu Giraudeau
    •  & Tuul Sepp
  2. Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK

    • Mathieu Giraudeau
  3. Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia

    • Tuul Sepp
  4. Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia

    • Beata Ujvari
  5. Department of Biology, University of Louisville, Louisville, KY, USA

    • Paul W. Ewald
  6. CREEC, Montpellier, France

    • Frédéric Thomas
  7. MIVEGEC, Montpellier, France

    • Frédéric Thomas

Authors

  1. Search for Mathieu Giraudeau in:

  2. Search for Tuul Sepp in:

  3. Search for Beata Ujvari in:

  4. Search for Paul W. Ewald in:

  5. Search for Frédéric Thomas in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Frédéric Thomas.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0558-7