Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function

Abstract

Biodiversity promotes ecosystem function as a consequence of functional differences among organisms that enable resource partitioning and facilitation. As the need for biodiversity assessments increases in the face of accelerated global change, novel approaches that are rapid, repeatable and scalable are critical, especially in ecosystems for which information about species identity and the number of species is difficult to acquire. Here, we present 'spectral diversity'—a spectroscopic index of the variability of electromagnetic radiation reflected from plants measured in the visible, near-infrared and short-wave infrared regions (400–2,400 nm). Using data collected from the Cedar Creek biodiversity experiment (Minnesota, USA), we provide evidence that the dissimilarity of species' leaf spectra increases with functional dissimilarity and evolutionary divergence time. Spectral diversity at the leaf level explains 51% of total variation in productivity—a proportion comparable to taxonomic (47%), functional (51%) or phylogenetic diversity (48%)—and performs similarly when calculated from high-resolution canopy image spectra. Spectral diversity is an emerging dimension of plant biodiversity that integrates trait variation within and across species even in the absence of taxonomic, functional, phylogenetic or abundance information, and has the potential to transform biodiversity assessment because of its scalability to remote sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: More functionally different and more distantly related species are more spectrally dissimilar.
Fig. 2: Spectral profiles, their coefficient of variation and local maxima of the coefficient of variation.
Fig. 3: Relationship between spectral diversity and productivity.

Similar content being viewed by others

References

  1. Anderson, S. et al. State of the World’s Plants 2016 (Royal Botanic Gardens, Kew, 2016).

  2. Ten Brink, P. et al. in The Cost of Policy Inaction: The Case of Not Meeting the 2010 Biodiversity Target (eds Braat, L. & Ten Brink, P.) Ch. 6 (Alterra, Wageningen, 2008).

  3. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Tilman, D., Lehman, C. L. & Bristow, C. E. Diversity–stability relationships: statistical inevitability or ecological consequence? Am. Nat. 151, 277–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

    Article  CAS  Google Scholar 

  8. Dı́az, S. & Cabido, M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article  Google Scholar 

  9. Williams, L. J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich, P. B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 1, 0063 (2017).

    Article  Google Scholar 

  10. Wright, A., Schnitzer, S. A. & Reich, P. B. Living close to your neighbors: the importance of both competition and facilitation in plant communities. Ecology 95, 2213–2223 (2014).

    Article  PubMed  Google Scholar 

  11. Fargione, J. et al. From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B 274, 871–876 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).

    Article  PubMed  Google Scholar 

  13. Kraft, N. J., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).

    Article  Google Scholar 

  16. Laliberté, E. & Legendre, P. A distance‐based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article  PubMed  Google Scholar 

  17. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. Trait‐based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).

    Article  PubMed  Google Scholar 

  19. Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17012–17017 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  22. Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).

    Article  PubMed  Google Scholar 

  23. Gravel, D. et al. Phylogenetic constraints on ecosystem functioning. Nat. Commun. 3, 1117 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Ackerly, D. D. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164, S165–S184 (2003).

    Article  Google Scholar 

  25. Cavender-Bares, J., Ackerly, D., Baum, D. & Bazzaz, F. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).

    Article  PubMed  Google Scholar 

  28. Siefert, A. et al. A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).

    Article  PubMed  Google Scholar 

  29. Ustin, S. L. et al. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 113, S67–S77 (2009).

    Article  Google Scholar 

  30. Curran, P. J. Remote sensing of foliar chemistry. Remote Sens. Environ. 30, 271–278 (1989).

    Article  Google Scholar 

  31. Jacquemoud, S. & Baret, F. PROSPECT: a model of leaf optical properties spectra. Remote Sens. Environ. 34, 75–91 (1990).

    Article  Google Scholar 

  32. Ollinger, S. V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 189, 375–394 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Asner, G. P. & Martin, R. E. Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Front. Ecol. Environ. 7, 269–276 (2008).

    Article  Google Scholar 

  34. Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Informatics 5, 318–329 (2010).

    Article  Google Scholar 

  35. Ustin, S. L. & Gamon, J. A. Remote sensing of plant functional types. New Phytol. 186, 795–816 (2010).

    Article  PubMed  Google Scholar 

  36. Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Gamon, J. A., Cheng, Y., Claudio, H., MacKinney, L. & Sims, D. A. A mobile tram system for systematic sampling of ecosystem optical properties. Remote Sens. Environ. 103, 246–254 (2006).

    Article  Google Scholar 

  38. Wang, R.., Gamon, J. A.., Cavender-Bares, J.., Townsend, P. A.., & Zygielbaum, A. I.. The spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental test in a prairie grassland. Ecol. Appl. 28, 541–556 (2018).

    Article  PubMed  Google Scholar 

  39. Davies, T. J., Urban, M. C., Rayfield, B., Cadotte, M. W. & Peres‐Neto, P. R. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology 97, 2212–2222 (2016).

    Article  PubMed  Google Scholar 

  40. Scheiner, S. M.., Kosman, E.., Presley, S. J.., & Willig, M. R.. Decomposing functional diversity. Methods Ecol. Evol. 8, 809–820 (2017).

    Article  Google Scholar 

  41. McManus, K. M. et al. Phylogenetic structure of foliar spectral traits in tropical forest canopies. Remote Sens. 8, 196 (2016).

    Article  Google Scholar 

  42. Cavender-Bares, J. et al. Associations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversity. Remote Sens. 8, 221 (2016).

    Article  Google Scholar 

  43. Sims, D. A. & Gamon, J. A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81, 337–354 (2002).

    Article  Google Scholar 

  44. Cavender-Bares, J. et al. Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales. Am. J. Bot. 104, 966–969 (2017).

    Article  PubMed  Google Scholar 

  45. Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4, e5695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24, 1651–1669 (2014).

    Article  Google Scholar 

  47. Kokaly, R. F. & Clark, R. N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 67, 267–287 (1999).

    Article  Google Scholar 

  48. Madritch, M. D. et al. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Phil. Trans. R. Soc. B 369, 20130194 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kothari, S. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica 56, 455–467 (2018).

    Article  CAS  Google Scholar 

  50. Townsend, P. A.., Serbin, S. P.., Kruger, E. L.., & Gamon, J. A.. Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data. Proc. Natl Acad. Sci. USA 110, E1074 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Meireles, J. E., Schweiger, A. K. & Cavender-Bares, J. spectrolab: class and methods for hyperspectral data R package version 0.0.2 (2017); https://CRAN.R-project.org/package=spectrolab

  52. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).

  53. Wold, S., Martens, H. & Wold, H. in Matrix Pencils (Lecture Notes in Mathematics) (eds Ruhe, A. & Kagstrom, B.) 286–293 (Springer, Heidelberg, 1983).

  54. Gilmore, A. M. & Yamamoto, H. Y. Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. J. Chromatogr. A 543, 137–145 (1991).

    Article  CAS  Google Scholar 

  55. Quach, H. T., Steeper, R. L. & Griffin, G. W. An improved method for the extraction and thin-layer chromatography of chlorophyll a and b from spinach. J. Chem. Educ. 81, 385 (2004).

    Article  CAS  Google Scholar 

  56. Watanabe, T. et al. Preparation of chlorophylls and pheophytins by isocratic liquid chromatography. Anal. Chem. 56, 251–256 (1984).

    Article  CAS  Google Scholar 

  57. Zieger, R., & Egle, K. Zur quantitativen Analyse der Chloroplasten Pigmente. I. Kritische Überprüfung derspektralphotometrischen Chlorophyllbestimmung. Beitr. Biol. Pflanz 41, 11–37 (1965).

    Google Scholar 

  58. Hiyama, T., Nishimura, M. & Chance, B. Determination of carotenes by thin-layer chromatography. Anal. Biochem. 29, 339–342 (1969).

    Article  CAS  PubMed  Google Scholar 

  59. Aasen, A. & Jensen, S. L. Carotenoids of flexibacteria. IV. The carotenoids of two further pigment types. Acta Chem. Scand. 20, 2322–2324 (1966).

    Article  CAS  PubMed  Google Scholar 

  60. De las Rivas, J., Abadía, A. & Abadía, J. A new reversed phase-HPLC method resolving all major higher plant photosynthetic pigments. Plant Physiol. 91, 190–192 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bertrand, F., Meyer, N. & Maumy-Bertrand, M. Partial least squares regression for generalized linear models R package version 1.1.1 (2014); https://CRAN.R-project.org/package=plsRglm

  62. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article  Google Scholar 

  64. Oksanen, J. et al. vegan: community ecology package R package version 2.4-1 (2016); https://CRAN.R-project.org/package=vegan

  65. Laliberté, E., Legendre, P., Shipley, B. & Laliberté, M. E. FD: measuring functional diversity from multiple traits, and other tools for functional ecology R package version 1.0-12 (2010); https://CRAN.R-project.org/package=FD

Download references

Acknowledgements

We acknowledge B. Fredericksen for help with leaf-level sampling, HPLC and proof reading, I. Carriere for leaf-level sampling, C. Nguyen for chemical assays and HPLC, S. Kothari for carbon fraction analysis, H. Gholizadeh and B. Leavitt for curating the tram data, and M. Kaproth and E. Murdock for proof reading. Funding was provided by the National Science Foundation and National Aeronautics and Space Administration through the Dimensions of Biodiversity programme (DEB-1342872 grant to J.C.-B. and S.E.H., DEB-1342778 grant to P.A.T., DEB-1342827 grant to M.D.M., DEB-1342823 grant to J.A.G.), the Cedar Creek National Science Foundation Long-Term Ecological Research programme (DEB-1234162), iCORE/AITF (G224150012 and 200700172), NSERC (RGPIN-2015-05129), and CFI (26793) grants to J.A.G., and a China Scholarship Council fellowship to R.W.

Author information

Authors and Affiliations

Authors

Contributions

This work is part of the Dimensions of Biodiversity project 'Linking remotely sensed optical diversity to genetic, phylogenetic and functional diversity to predict ecosystem processes', conceptualized by J.C.-B., P.A.T., S.E.H., M.D.M. and J.A.G. D.T. designed the Cedar Creek biodiversity experiment and advised on the project design. A.K.S. planned and conducted the data collection with input from J.C.-B., P.A.T. and J.A.G. J.A.G. designed the spectral tram and collected the tram data jointly with R.W. A.K.S. led the chemical analysis. A.K.S. analysed and interpreted the data with input from J.C.-B. A.K.S. wrote the manuscript. J.C.-B. edited the manuscript. P.A.T., S.E.H., M.D.M., D.T. and J.A.G. provided input to the manuscript at various stages.

Corresponding authors

Correspondence to Anna K. Schweiger or Jeannine Cavender-Bares.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–10, Supplementary Tables 1–3, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweiger, A.K., Cavender-Bares, J., Townsend, P.A. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat Ecol Evol 2, 976–982 (2018). https://doi.org/10.1038/s41559-018-0551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0551-1

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene