Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway

Abstract

Autotrophic theories for the origin of life propose that CO2 was the carbon source for primordial biosynthesis. Among the six known CO2 fixation pathways in nature, the acetyl-CoA (AcCoA; or Wood–Ljungdahl) pathway is the most ancient, and relies on transition metals for catalysis. Modern microbes that use the AcCoA pathway typically fix CO2 with electrons from H2, which requires complex flavin-based electron bifurcation. This presents a paradox: how could primitive metabolic systems have fixed CO2 before the origin of proteins? Here, we show that native transition metals (Fe0, Ni0 and Co0) selectively reduce CO2 to acetate and pyruvate—the intermediates and end-products of the AcCoA pathway—in near millimolar concentrations in water over hours to days using 1–40 bar CO2 and at temperatures from 30 to 100 °C. Geochemical CO2 fixation from native metals could have supplied critical C2 and C3 metabolites before the emergence of enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanistic outline of the ATP-independent AcCoA pathway found in archaea.
Fig. 2: Carbon fixation by metals under hydrothermal conditions.
Fig. 3: Effect of temperature, pressure and reaction time on iron-promoted CO2 fixation in aqueous solution.
Fig. 4: Plausible mechanism for carbon fixation on the surface of Fe0 accounting for the detection of formate, methanol, acetate and pyruvate in aqueous solution upon hydrolysis with KOH.
Fig. 5: Hypothetical ancestral proto-anabolic network consisting of a hybrid of the AcCoA pathway and the rTCA cycle, showing the role of its intermediates as universal biosynthetic precursors.

Similar content being viewed by others

References

  1. Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    Article  CAS  Google Scholar 

  2. Peretó, J. Out of fuzzy chemistry: from prebiotic chemistry to metabolic networks. Chem. Soc. Rev. 41, 5394–5403 (2012).

    Article  Google Scholar 

  3. Sutherland, J. D. Studies on the origin of life—the end of the beginning. Nat. Rev. Chem. 1, 0012 (2017).

    Article  CAS  Google Scholar 

  4. Berg et al. Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 8, 447–460 (2010).

    Article  CAS  Google Scholar 

  5. Hügler, M. & Sievert, S. M. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3, 261–289 (2011).

    Article  Google Scholar 

  6. Ljungdahl, L. G., Irion, E. & Wood, H. G. Total synthesis of acetate from CO2. I. Co-methylcobyric acid and co-(methyl)-5-methoxy-benzimidizolycobamide as intermediates with Clostridium thermoaceticum. Biochemistry 4, 2771–2779 (1965).

    Article  CAS  Google Scholar 

  7. Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).

    Article  CAS  Google Scholar 

  8. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    Article  CAS  Google Scholar 

  9. Can, M., Armstrong, F. A. & Ragsdale, S. W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase and acetyl-CoA synthase. Chem. Rev. 114, 4149–4174 (2014).

    Article  CAS  Google Scholar 

  10. Schwarz, G., Mendel, R. R. & Ribbe, M. W. Molybdenum cofactors, enzymes and pathways. Nature 460, 839–847 (2009).

    Article  CAS  Google Scholar 

  11. Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821 (2014).

    Article  CAS  Google Scholar 

  12. Furdui, C. & Ragsdale, S. W. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood–Ljungdahl pathway. J. Biol. Chem. 275, 28494–28499 (2000).

    Article  CAS  Google Scholar 

  13. Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. B 362, 1887–1926 (2007).

    Article  CAS  Google Scholar 

  14. Herrmann, G., Jayamani, E., Mai, G. & Buckel, W. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J. Bacteriol. 190, 784–791 (2008).

    Article  CAS  Google Scholar 

  15. Huber, C. & Wächtershäuser, G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276, 245–247 (1997).

    Article  CAS  Google Scholar 

  16. Cody, G. D. et al. Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289, 1337–1340 (2000).

    Article  CAS  Google Scholar 

  17. Sousa, F. L., Preiner, M. & Martin, W. F. Native metals, electron bifurcation, and CO2 reduction in early biochemical evolution. Curr. Opin. Microbiol. 43, 77–83 (2018).

    Article  CAS  Google Scholar 

  18. Kato, S., Yumoto, I. & Kamagata, Y. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl. Env. Microbiol. 81, 67–73 (2015).

    Article  Google Scholar 

  19. Daniels, L., Belay, N., Rajagopal, B. S. & Weimer, P. J. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237, 509–511 (1987).

    Article  CAS  Google Scholar 

  20. Muchowska, K. et al. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017).

    Article  Google Scholar 

  21. He, C., Tian, G., Liu, Z. & Feng, S. A mild hydrothermal route to fix carbon dioxide to simple carboxylic acids. Org. Lett. 12, 649–651 (2010).

    Article  CAS  Google Scholar 

  22. Sousa, F. & Martin, W. F. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon metabolism. Biochim. Biophys. Acta 1837, 964–981 (2014).

    Article  CAS  Google Scholar 

  23. Morowitz, H. J., Srinivasan, V. & Smith, E. Ligand field theory and the origin of life as an emergent feature of the periodic table of elements. Biol. Bull. 219, 1–6 (2010).

    Article  CAS  Google Scholar 

  24. Camprubi, E., Jordan, S. F., Vasiliadou, R. & Lane, N. Iron catalysis at the origin of life. IUBMB Life 69, 373–381 (2017).

    Article  CAS  Google Scholar 

  25. Moore, E. K., Jelen, B. I., Giovanelli, D., Raanan, H. & Falkowski, P. G. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017).

    Article  CAS  Google Scholar 

  26. Guan, G. et al. Reduction of aqueous CO2 at ambient temperature using zero-valent iron-based composites. Green Chem. 5, 630–634 (2003).

    Article  CAS  Google Scholar 

  27. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  Google Scholar 

  28. Evans, M. C. W., Buchanan, B. B. & Arnon, D. I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl Acad. Sci. USA 55, 928–934 (1966).

    Article  CAS  Google Scholar 

  29. Wächtershäuser, G. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484 (1988).

    PubMed  PubMed Central  Google Scholar 

  30. Smith, E. & Morowitz, H. J. The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere (Cambridge Univ. Press, Cambridge, 2016).

  31. Morowitz, H. J., Kostelnik, J. D., Yang, J. & Cody, G. D. The origin of intermediary metabolism. Proc. Natl Acad. Sci. USA 97, 7704–7708 (2000).

    Article  CAS  Google Scholar 

  32. Smith, E. & Morowitz, H. J. Universality in intermediary metabolism. Proc. Natl Acad. Sci. USA 101, 13168–13173 (2004).

    Article  CAS  Google Scholar 

  33. Braakman, R. & Smith, E. The emergence and early evolution of biological carbon-fixation. PLoS Comp. Biol. 8, e1002455 (2012).

    Article  CAS  Google Scholar 

  34. Braakman, R. & Smith, E. The compositional and evolutionary logic of metabolism. Phys. Biol. 10, 011001 (2013).

    Article  Google Scholar 

  35. Chandru, K., Gilbert, A., Butch, C., Aono, M. & Cleaves, H. J. The abiotic chemistry of thiolated acetate derivatives and the origin of life. Sci. Rep. 6, 29883 (2016).

    Article  CAS  Google Scholar 

  36. Roldan, A. et al. Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. Chem. Commun. 51, 7501–7504 (2015).

    Article  CAS  Google Scholar 

  37. Klöck, W., Palme, H. & Tobschall, H. J. Trace elements in natural metallic iron from Disko Island, Greenland. Contrib. Mineral. Petrol. 93, 273–282 (1986).

    Article  Google Scholar 

  38. McCollom, T. M. Abiotic methane formation during experimental serpentinization of olivine. Proc. Natl Acad. Sci. USA 113, 13965–13970 (2016).

    Article  CAS  Google Scholar 

  39. Sleep, N. H., Meibom, A., Fridriksson, T, Coleman, R. G. & Bird, D. K. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. USA 101, 12818–12823 (2004).

    Article  CAS  Google Scholar 

  40. Frost, D. J. et al. Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409–412 (2004).

    Article  CAS  Google Scholar 

  41. Darling, D. J. The Universal Book of Astronomy 260 (Wiley, Hoboken, 2004).

  42. Krot, A. N., Keil, K., Scott, E. R. D., Goodrich, C. A. & Weisberg, M. K. in Treatise on Geochemistry 2nd edn Vol. 1 (eds Holland, H. & Turekian, K.) 1–63 (Elsevier, Oxford, 2014).

  43. Russell, M. J., Hall, A. J. & Mellersh, A. R. in Natural and Laboratory Simulated Thermal Geochemical Processes (ed. Ikan, R.) 325–388 (Springer, Dordrecht, 2003).

  44. Bassez, M.-P. Water, air, earth and cosmic radiation. Orig. Life Evol. Biosph. 45, 5–13 (2015).

    Article  CAS  Google Scholar 

  45. Bassez, M.-P. Anoxic and oxic oxidation of rocks containing Fe(II)Mg-silicates and Fe(II)-monosulfides as source of Fe(III)-minerals and hydrogen. Geobiotropy. Orig. Life Evol. Biosph. 47, 453–480 (2017).

    Article  CAS  Google Scholar 

  46. Cooper, G., Reed, C., Nguyen, D., Carter, M. & Wang, Y. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proc. Natl Acad. Sci. USA 108, 14015–14020 (2011).

    Article  CAS  Google Scholar 

  47. Orgel, L. E. The implausibility of metabolic cycles on the prebiotic earth. PLoS Biol. 6, e18 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement 639170). Further funding was provided by a grant from LabEx ‘Chemistry of Complex Systems’. L. Allouche, M. Coppe and B. Vincent are gratefully acknowledged for assistance with the NMR experiments. We thank E. Smith and W. F. Martin for critical readings of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.M. supervised the research and the other authors performed the experiments. All authors contributed intellectually throughout the study. J.M. and K.B.M wrote the paper, and S.J.V. and K.B.M. assembled the Supplementary Information. Important preliminary experiments were carried out by P.C.

Corresponding author

Correspondence to Joseph Moran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–35, Supplementary Tables 1–19

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, S.J., Muchowska, K.B., Chatelain, P. et al. Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nat Ecol Evol 2, 1019–1024 (2018). https://doi.org/10.1038/s41559-018-0542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0542-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing