The African continent is facing one of the driest periods in the past three decades as well as continued deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for improved capabilities of monitoring large-scale aboveground carbon stock dynamics. Here we use a satellite dataset based on vegetation optical depth derived from low-frequency passive microwaves (L-VOD) to quantify annual aboveground biomass-carbon changes in sub-Saharan Africa between 2010 and 2016. L-VOD is shown not to saturate over densely vegetated areas. The overall net change in drylands (53% of the land area) was −0.05 petagrams of C per year (Pg C yr−1) associated with drying trends, and a net change of −0.02 Pg C yr−1 was observed in humid areas. These trends reflect a high inter-annual variability with a very dry year in 2015 (net change, −0.69 Pg C) with about half of the gross losses occurring in drylands. This study demonstrates, first, the applicability of L-VOD to monitor the dynamics of carbon loss and gain due to weather variations, and second, the importance of the highly dynamic and vulnerable carbon pool of dryland savannahs for the global carbon balance, despite the relatively low carbon stock per unit area.

  • Subscribe to Nature Ecology & Evolution for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 0081 (2017).

  2. 2.

    Rudel, T. K. The national determinants of deforestation in sub-Saharan Africa. Phil. Trans. R. Soc. B 368, 20120405 (2013).

  3. 3.

    Ciais, P. et al. The carbon balance of Africa: synthesis of recent research studies. Phil. Trans. R. Soc. A 369, 2038–2057 (2011).

  4. 4.

    Williams, C. A. et al. Africa and the global carbon cycle. Carbon Balance Manag. 2, 3 (2007).

  5. 5.

    Rodriguez-Veiga, P., Saatchi, S., Wheeler, J., Tansey, K. & Balzter, H. in Earth Observation for Land and Emergency Monitoring (ed. Balzter, H.) Ch. 2, 5–32 (John Wiley & Sons, Chichester, 2017).

  6. 6.

    Réjou-Méchain, M. et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11, 6827–6840 (2014).

  7. 7.

    Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016).

  8. 8.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

  9. 9.

    Hill, M. J. & Hanan, N. P. Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales (CRC Press, Boca Raton, London, New York, 2010).

  10. 10.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

  11. 11.

    Niang, I. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1199–1265 (IPCC, Cambridge Univ. Press, 2014).

  12. 12.

    Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

  13. 13.

    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

  14. 14.

    Yue, C. et al. Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015. Atmos. Chem. Phys. 17, 13903–13919 (2017).

  15. 15.

    Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

  16. 16.

    Mermoz, S., Le Toan, T., Villard, L., Réjou-Méchain, M. & Seifert-Granzin, J. Biomass assessment in the Cameroon savanna using ALOS PALSAR data. Remote Sens. Environ. 155, 109–119 (2014).

  17. 17.

    Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).

  18. 18.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

  19. 19.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

  20. 20.

    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).

  21. 21.

    Adoption of the Paris Agreement (UNFCCC, 2015).

  22. 22.

    Tian, F. et al. Remote sensing of vegetation dynamics in drylands: evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).

  23. 23.

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

  24. 24.

    Kerr, Y. H. et al. Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens. Environ. 180, 40–63 (2016).

  25. 25.

    Wigneron, J.-P. et al. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 192, 238–262 (2017).

  26. 26.

    Hollmann, R. et al. The ESA climate change initiative: satellite data records for essential climate variables. Bull. Am. Meteor. Soc. 94, 1541–1552 (2013).

  27. 27.

    Brandt, M. et al. Woody vegetation die off and regeneration in response to rainfall variability in the West African Sahel. Remote Sens 9, 39 (2017).

  28. 28.

    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

  29. 29.

    Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690 (2017).

  30. 30.

    Kerr, Y. H. et al. Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 39, 1729–1735 (2001).

  31. 31.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

  32. 32.

    Global Forest Resource Assessment (FAO, 2016).

  33. 33.

    Skowno, A. L. et al. Woodland expansion in South African grassy biomes based on satellite observations (1990–2013): general patterns and potential drivers. Glob. Change Biol. 23, 2358–2369 (2017).

  34. 34.

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

  35. 35.

    Stevens, N., Erasmus, B. F. N., Archibald, S. & Bond, W. J. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?. Phil. Trans. R. Soc. B 371, 20150437 (2016).

  36. 36.

    Biederman, J. A. et al. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Glob. Change Biol. 23, 4204–4221 (2017).

  37. 37.

    Mbow, C. Biogeoscience: Africa’s greenhouse-gas budget is in the red. Nature 508, 192–193 (2014).

  38. 38.

    Ji, F., Wu, Z., Huang, J. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Change 4, 462–466 (2014).

  39. 39.

    Fernandez-Moran, R. et al. SMOS-IC: an alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 9, 457 (2017).

  40. 40.

    Wigneron, J.-P. et al. L-band microwave emission of the biosphere (L-MEB) model: description and calibration against experimental data sets over crop fields. Remote Sens. Environ. 107, 639–655 (2007).

  41. 41.

    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).

  42. 42.

    Kerr, Y. H. et al. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 50, 1384–1403 (2012).

  43. 43.

    Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007 — an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).

  44. 44.

    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

  45. 45.

    Wei, Y. et al. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project - Part 2: Environmental driver data. Geosci. Model Dev. 7, 2875–2893 (2014).

  46. 46.

    Poulter, B. et al. Plant functional type mapping for earth system models. Geosci. Model Dev. 4, 993–1010 (2011).

  47. 47.

    Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s land cover climate change initiative. Geosci. Model Dev. 8, 2315–2328 (2015).

  48. 48.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109, 117 (2011).

  49. 49.

    Peng, S. et al. Sensitivity of land use change emission estimates to historical land use and land cover mapping. Glob. Biogeochem. Cycles 31, 626–643 (2017).

  50. 50.

    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

  51. 51.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

  52. 52.

    Lamarque, J.-F. et al. Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).

  53. 53.

    Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 101, 4115–4128 (1996).

  54. 54.

    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).

Download references


This research work was funded by CNES (Centre National d’Etudes Spatiales) through the Science TEC (Terre Environment et Climat) program. M.B., F.T. and R.F. acknowledge the funding from the Danish Council for Independent Research (DFF) Grant ID: DFF–6111-00258. M.B. is supported by an AXA post-doctoral fellowship. We thank DigitalGlobe for providing commercial satellite data within the NextView license program. P.C., A.V. and J.P. acknowledge funding from the European Research Council Synergy grant ERC-2013-SyG-610028 IMBALANCE-P. T.T. was funded by the Swedish national space board (Dnr: 95/16). P.C. acknowledges additional support from the ANR ICONV CLAND grant. J.Chav. has benefited from “Investissement d’Avenir” grants managed by the French Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01 and TULIP, ref. ANR-10-LABX-0041), and from TOSCA funds from the CNES.

Author information


  1. Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark

    • Martin Brandt
    • , Torbern Tagesson
    • , Kjeld Rasmussen
    • , Feng Tian
    • , Guy Schurgers
    • , Wenmin Zhang
    • , Laura Vang Rasmussen
    •  & Rasmus Fensholt
  2. ISPA, UMR 1391, INRA Nouvelle-Aquitaine, Bordeaux Villenave d’Ornon, France

    • Jean-Pierre Wigneron
    • , Amen Al-Yaari
    •  & Lei Fan
  3. Laboratoire Evolution and Diversité Biologique, Bâtiment 4R3 Université Paul Sabatier, Toulouse, France

    • Jerome Chave
  4. CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain

    • Josep Penuelas
    •  & Aleixandre Verger
  5. CREAF, Cerdanyola del Vallès, Spain

    • Josep Penuelas
    •  & Aleixandre Verger
  6. Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, CE Orme des Merisiers, Gif sur Yvette, France

    • Philippe Ciais
    •  & Jinfeng Chang
  7. START International Inc, Washington DC, USA

    • Cheikh Mbow
  8. CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France

    • Nemesio Rodriguez-Fernandez
    • , Yann Kerr
    •  & Arnaud Mialon
  9. International Institute for Earth System Sciences, Nanjing University, Nanjing, China

    • Wenmin Zhang
  10. NASA Goddard Space Flight Center, Greenbelt, MD, USA

    • Compton Tucker


  1. Search for Martin Brandt in:

  2. Search for Jean-Pierre Wigneron in:

  3. Search for Jerome Chave in:

  4. Search for Torbern Tagesson in:

  5. Search for Josep Penuelas in:

  6. Search for Philippe Ciais in:

  7. Search for Kjeld Rasmussen in:

  8. Search for Feng Tian in:

  9. Search for Cheikh Mbow in:

  10. Search for Amen Al-Yaari in:

  11. Search for Nemesio Rodriguez-Fernandez in:

  12. Search for Guy Schurgers in:

  13. Search for Wenmin Zhang in:

  14. Search for Jinfeng Chang in:

  15. Search for Yann Kerr in:

  16. Search for Aleixandre Verger in:

  17. Search for Compton Tucker in:

  18. Search for Arnaud Mialon in:

  19. Search for Laura Vang Rasmussen in:

  20. Search for Lei Fan in:

  21. Search for Rasmus Fensholt in:


J.-P.W., M.B., J.Chav., F.T. and R.F. designed the study. J.-P.W., A.A.-Y., N.R.-F., Y.K. and A.M. prepared the SMOS-IC data. P.C. and J.Chan. prepared the ORCHIDEE data, G.S. prepared the LPJ-GUESS data, C.T. prepared the high spatial-resolution satellite data. M.B., F.T. and W.Z. analysed the data. The results were interpreted by J.Chav., J.-P.W., T.T., J.P., P.C., L.V.R., K.R., C.M., L.F., A.V. and R.F. The manuscript was drafted by M.B., K.R., J.Chav., R.F., J.P.W. and P.C. with contributions by all authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Martin Brandt or Jean-Pierre Wigneron.

Supplementary information

  1. Supplementary Information

    Supplementary tables, figures and references

  2. Reporting Summary