Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation

Abstract

Understanding the mechanisms governing innovation is a central element of evolutionary theory. Novel traits usually arise through mutations in existing genes, but trade-offs between new and ancestral protein functions are pervasive and constrain the evolution of innovation. Classical models posit that evolutionary innovation circumvents the constraints imposed by trade-offs through genetic amplifications, which provide functional redundancy. Bacterial multicopy plasmids provide a paradigmatic example of genetic amplification, yet their role in evolutionary innovation remains largely unexplored. Here, we reconstructed the evolution of a new trait encoded in a multicopy plasmid using TEM-1 β-lactamase as a model system. Through a combination of theory and experimentation, we show that multicopy plasmids promote the coexistence of ancestral and novel traits for dozens of generations, allowing bacteria to escape the evolutionary constraints imposed by trade-offs. Our results suggest that multicopy plasmids are excellent platforms for evolutionary innovation, contributing to explain their extreme abundance in bacteria.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Conceptual and experimental models.
Fig. 2: Bacterial growth and allelic content in the antibiotics array.
Fig. 3: Invasion experiments.
Fig. 4: MCPs alleviate trade-offs under strong selective pressures.
Fig. 5: Theoretical model.
Fig. 6: Numerical examples predicting the duration of plasmid-mediated heterozygosity under a range of fluctuating antibiotic conditions.

References

  1. 1.

    Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nat. Rev. Genet. 9, 938–950 (2008).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Toll-Riera, M., San Millan, A., Wagner, A. & MacLean, R. C. The genomic basis of evolutionary innovation in Pseudomonas aeruginosa. PLoS Genet. 12, 1–21 (2016).

    Article  Google Scholar 

  4. 4.

    Childers, W. S. et al. Cell fate regulation governed by a repurposed bacterial histidine kinase. PLoS Biol. 12, e1001979 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Anderson, D. P. et al. Evolution of an ancient protein function involved in organized multicellularity in animals. eLife 5, e10147 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bershtein, S. & Tawfik, D. S. Ohno’s model revisited: measuring the frequency of potentially adaptive mutations under various mutational drifts. Mol. Biol. Evol. 25, 2311–2318 (2008).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Stiffler, M. A., Hekstra, D. R. & Ranganathan, R. Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 160, 882–892 (2015).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Soskine, M. & Tawfik, D. S. Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11, 572–582 (2010).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97–108 (2010).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Bergthorsson, U., Andersson, D. I. & Roth, J. R. Ohno’s dilemma: evolution of new genes under continuous selection. Proc. Natl Acad. Sci. USA 104, 17004–17009 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pettersson, M. E., Sun, S., Andersson, D. I. & Berg, O. G. Evolution of new gene functions: simulation and analysis of the amplification model. Genetica 135, 309–324 (2009).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Adler, M., Anjum, M., Berg, O. G., Andersson, D. I. & Sandegren, L. High fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanisms. Mol. Biol. Evol. 31, 1526–1535 (2014).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 578–588 (2009).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Toussaint, J.-P. et al. Gene duplication in Pseudomonas aeruginosa improves growth on adenosine. J. Bacteriol. 199, e00261-17 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Näsvall, J., Sun, L., Roth, J. R. & Andersson, D. I. Real-time evolution of new genes by innovation, amplification, and divergence. Science 338, 384–387 (2012).

  17. 17.

    Stoesser, N. et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 7, e02162 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Summers, D. K. The Biology of Plasmids (Blackwell, 2009).

  19. 19.

    Mroczkowska, J. E. & Barlow, M. Fitness trade-offs in blaTEM evolution. Antimicrob. Agents Chemother. 52, 2340–2345 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Schenk, M. F. et al. Role of pleiotropy during adaptation of TEM-1 β-lactamase to two novel antibiotics. Evol. Appl. 8, 248–260 (2015).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 0010 (2016).

    Article  Google Scholar 

  22. 22.

    Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Fuentes-Hernandez, A. et al. Using a sequential regimen to eliminate bacteria at sublethal antibiotic dosages. PLoS Biol. 13, e1002104 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948).

    Article  Google Scholar 

  26. 26.

    Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, 379–384 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Sellis, D., Kvitek, D. J., Dunn, B., Sherlock, G. & Petrov, D. A. Heterozygote advantage is a common outcome of adaptation in Saccharomyces cerevisiae. Genetics 203, 1401–1413 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Niskanen, A. K. et al. Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population. Mol. Ecol. 23, 875–889 (2014).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Holloway, A. K., Palzkill, T. & Bull, J. J. Experimental evolution of gene duplicates in a bacterial plasmid model. J. Mol. Evol. 64, 215–222 (2007).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Dhar, R., Bergmiller, T. & Wagner, A. Increased gene dosage plays a predominant role in the initial stages of evolution of duplicate tem-1 beta lactamase genes. Evolution 68, 1775–1791 (2014).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Bedhomme, S., Perez Pantoja, D. & Bravo, I. G. Plasmid and clonal interference during post horizontal gene transfer evolution. Mol. Ecol. 26, 1832–1847 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Santos-Lopez, A. et al. A naturally occurring SNP in plasmid pB1000 produces a reversible increase in antibiotic resistance. Antimicrob. Agents Chemother. 2, AAC.01735-16 (2016).

    Article  Google Scholar 

  33. 33.

    Wu, P. J., Shannon, K. & Phillips, I. Mechanisms of hyperproduction of TEM-1 beta-lactamase by clinical isolates of Escherichia coli. J. Antimicrob. Chemother. 36, 927–939 (1995).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Latorre, A., Gil, R., Silva, F. J. & Moya, A. Chromosomal stasis versus plasmid plasticity in aphid endosymbiont Buchnera aphidicola. Heredity 95, 339–347 (2005).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Gomez, A. et al. Creating new genes by plasmid recombination in Escherichia coli and Bacillus subtilis. Appl. Environ. Microbiol. 71, 7607–7609 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rodríguez-Beltrán, J. et al. High recombinant frequency in extraintestinal pathogenic Escherichia coli strains. Mol. Biol. Evol. 32, 1708–1716 (2015).

    Article  PubMed  Google Scholar 

  38. 38.

    Guttman, D. S. & Dykhuizen, D. E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266, 1380–1383 (1994).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Gibbons, R. J. & Kapsimalis, B. Estimates of the overall rate of growth of the intestinal microflora of hamsters, guinea pigs, and mice. J. Bacteriol. 93, 510–512 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Vogwill, T. & Maclean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol. Appl. 8, 284–295 (2015).

    Article  PubMed  Google Scholar 

  41. 41.

    San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectr. 5, 5 (2017).

    Article  Google Scholar 

  42. 42.

    Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C. & de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    San Millan, A., Heilbron, K. & MacLean, R. C. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. ISME J. 8, 601–612 (2014).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Silva, R. F. et al. Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations. PLoS Genet. 7, e1002181 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Harrison, E. et al. Parallel compensatory evolution stabilizes plasmids across the parasitism–mutualism continuum. Curr. Biol. 25, 2034–2039 (2015).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Porse, A., Schønning, K., Munck, C. & Sommer, M. O. A. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol. Biol. Evol. 33, 2860–2873 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    San Millan, A. et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat. Commun. 5, 5208 (2014).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Loftie-Eaton, W. et al. Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat. Ecol. Evol. 1, 1354–1363 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Tenaillon, O., Taddei, F., Radman, M. & Matic, I. Second-order selection in bacterial evolution: selection acting on mutation and recombination rates in the course of adaptation. Res. Microbiol. 152, 11–16 (2001).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Imamovic, L. & Sommer, M. O. A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl. Med. 5, 204ra132 (2013).

    Article  PubMed  Google Scholar 

  51. 51.

    Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Leslie, A. G., Moody, P. C. & Shaw, W. V. Structure of chloramphenicol acetyltransferase at 1.75-A resolution. Proc. Natl Acad. Sci. USA 85, 4133–4137 (1988).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Bonapace, C. R., Bosso, J. A., Friedrich, L. V. & White, R. L. Comparison of methods of interpretation of checkerboard synergy testing. Diagn. Microbiol. Infect. Dis. 44, 363–366 (2002).

    Article  PubMed  Google Scholar 

  55. 55.

    Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K. & Tsien, R. Y. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl Acad. Sci. USA 97, 11990–11995 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement (Clinincal and Laboratory Standards Institute, 2014).

  57. 57.

    Skulj, M. et al. Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes. Microb. Cell Fact. 7, 6 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article  Google Scholar 

  60. 60.

    Summers, D. K. The kinetics of plasmid loss. Trends Biotechnol. 9, 273–278 (1991).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

  62. 62.

    Levin, B. R. & Stewart, F. M. The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors. Genetics 94, 425–443 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. León-Sampedro for valuable technical assistance with bioinformatic analyses. This work was supported by the Instituto de Salud Carlos III (Plan Estatal de I + D + i 2013–2016): grants CP15-00012, PI16-00860 and CIBER (CB06/02/0053), co-financed by the European Development Regional Fund (ERDF) ‘A way to achieve Europe’. R.P.M. and R.C.M. are supported by a Newton Advanced Fellowship awarded by the Royal Society (NA140196). R.P.M. and A.F.H. are funded by UNAM-PAPIIT (IA201017 and IA201016). R.C.M. was supported by a Wellcome Trust Senior Research Fellowship (WT106918AIA). J.C.R.H.B. is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received fellowship 596191 from CONACYT. J.A.E. is supported by the Atracción de Talento programme of the Comunidad de Madrid (2016-T1/BIO-1105). A.S.M. is supported by a Miguel Servet Fellowship from the Instituto de Salud Carlos III (MS15/00012) cofinanced by The European Social Fund (ESF) ‘Investing in your future’ and ERDF.

Author information

Affiliations

Authors

Contributions

J.R.B., A.S.M. and R.C.M. were responsible for the conceptualization of the study; J.R.B., A.S.M. and J.A.E. designed the methodology; R.P.M., J.C.R.H.B. and A.F.H. postulated and analysed the mathematical model; J.C.R.H.B., A.F.H., J.A.E., J.D. and J.R.B. performed experiments and contributed to data analysis; J.R.B. and A.S.M. analysed data and prepared the original draft of the manuscript and undertook the reviewing and editing; all authors supervised and approved the final version of the manuscript. A.S.M. was responsible for funding acquisition and supervision.

Corresponding authors

Correspondence to Jeronimo Rodriguez-Beltran or Alvaro San Millan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Tables 1–3.

Reporting Summary

Supplementary Data 1

Plots representing raw data of the bacterial growth and allelic content in the antibiotic array related to Figs. 2 and 4. The title on each plot denotes the population colonizing the antibiotic array, as well as the antibiotic selection route applied. Optical density (left side) and GFP/RFP ratio (right side) are colour-coded as indicated in the respective legends. The red square denotes the populations that were used to inoculate a fresh antibiotic array on the following day.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Beltran, J., Hernandez-Beltran, J.C.R., DelaFuente, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat Ecol Evol 2, 873–881 (2018). https://doi.org/10.1038/s41559-018-0529-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing