Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates

Abstract

Hox genes exert fundamental roles for proper regional specification along the main rostro-caudal axis of animal embryos. They are generally expressed in restricted spatial domains according to their position in the cluster (spatial colinearity)—a feature that is conserved across bilaterians. In jawed vertebrates (gnathostomes), the position in the cluster also determines the onset of expression of Hox genes (a feature known as whole-cluster temporal colinearity (WTC)), while in invertebrates this phenomenon is displayed as a subcluster-level temporal colinearity. However, little is known about the expression profile of Hox genes in jawless vertebrates (cyclostomes); therefore, the evolutionary origin of WTC, as seen in gnathostomes, remains a mystery. Here, we show that Hox genes in cyclostomes are expressed according to WTC during development. We investigated the Hox repertoire and Hox gene expression profiles in three different species—a hagfish, a lamprey and a shark—encompassing the two major groups of vertebrates, and found that these are expressed following a whole-cluster, temporally staggered pattern, indicating that WTC has been conserved during the past 500 million years despite drastically different genome evolution and morphological outputs between jawless and jawed vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hox cluster evolution in chordates.
Fig. 2: Molecular phylogenetic tree of vertebrate Hox genes.
Fig. 3: Spatial colinearity of hagfish Hox genes in the hindbrain of E. burgeri embryos.
Fig. 4: Developmental expression profiling of Hox genes in chordates.

Similar content being viewed by others

References

  1. Pearson, J. C., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body patterning. Nat. Rev. Genet. 6, 893–904 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Fernàndez, J. The genesis and evolution of homeobox gene clusters. Nat. Rev. Genet. 6, 881–892 (2005).

    Article  PubMed  Google Scholar 

  3. Pascual-Anaya, J., D’Aniello, S., Kuratani, S. & Garcia-Fernandez, J. Evolution of Hox gene clusters in deuterostomes. BMC Dev. Biol. 13, 26 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Smith, J. J. & Keinath, M. C. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications. Genome Res. 25, 1081–1090 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Putnam, N. H. et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064–1071 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Van de Peer, Y., Maere, S. & Meyer, A. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10, 725–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Van de Peer, Y., Maere, S. & Meyer, A. 2R or not 2R is not the question anymore. Nat. Rev. Genet. 11, 166 (2010).

    Article  PubMed  Google Scholar 

  9. Kuraku, S., Meyer, A. & Kuratani, S. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol. Biol. Evol. 26, 47–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Mehta, T. K. et al. Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc. Natl Acad. Sci. USA 110, 16044–16049 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith, J. J. et al. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seo, H. C. et al. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431, 67–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Dollé, P., Izpisúa-Belmonte, J. C., Falkenstein, H., Renucci, A. & Duboule, D. Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature 342, 767–772 (1989).

    Article  PubMed  Google Scholar 

  14. Izpisúa-Belmonte, J. C., Falkenstein, H., Dollé, P., Renucci, A. & Duboule, D. Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body. EMBO J. 10, 2279–2289 (1991).

    PubMed  PubMed Central  Google Scholar 

  15. Wang, S. et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat. Ecol. Evol. 1, 0120 (2017).

    Article  Google Scholar 

  16. Takio, Y. et al. Hox gene expression patterns in Lethenteron japonicum embryos—insights into the evolution of the vertebrate Hox code. Dev. Biol. 308, 606–620 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Stadler, P. F. et al. Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Mol. Phylogenet. Evol. 32, 686–694 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Dean, B. On the Embryology of Bdellostoma stouti: A General Account of Myxinoid Development from the Egg and Segmentation to Hatching 220–276 (G. Fischer, Jena, 1899).

  19. Oisi, Y., Ota, K. G., Kuraku, S., Fujimoto, S. & Kuratani, S. Craniofacial development of hagfishes and the evolution of vertebrates. Nature 493, 175–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Smith, J. J., Baker, C., Eichler, E. E. & Amemiya, C. T. Genetic consequences of programmed genome rearrangement. Curr. Biol. 22, 1524–1529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kohno, S.-i., Kubota, S. & Nakai, Y. in The Biology of Hagfishes (eds Mørup Jørgensen, J. et al.) 81–100 (Springer Netherlands, Dordrecht, 1998).

  22. Kuraku, S. Impact of asymmetric gene repertoire between cyclostomes and gnathostomes. Semin. Cell Dev. Biol. 24, 119–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).

  24. Kasahara, M. The 2R hypothesis: an update. Curr. Opin. Immunol. 19, 547–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Martin, K. J. & Holland, P. W. Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication. Mol. Biol. Evol. 31, 2592–2611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takio, Y. et al. Evolutionary biology: lamprey Hox genes and the evolution of jaws. Nature 429, https://doi.org/10.1038/nature02616 (2004).

  27. Schiemann, S. M. et al. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties. Proc. Natl Acad. Sci. USA 114, E1913–E1922 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parker, H. J., Bronner, M. E. & Krumlauf, R. A. Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature 514, 490–493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuratani, S., Horigome, N., Ueki, T., Aizawa, S. & Hirano, S. Stereotyped axonal bundle formation and neuromeric patterns in embryos of a cyclostome, Lampetra japonica. J. Comp. Neurol. 391, 99–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Oulion, S. et al. Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code. Evol. Dev. 13, 247–259 (2011).

    Article  PubMed  Google Scholar 

  31. Wingate, R. J. The rhombic lip and early cerebellar development. Curr. Opin. Neurobiol. 11, 82–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Murakami, Y. et al. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 131, 983–995 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kuraku, S. et al. Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark. Proc. Natl Acad. Sci. USA 105, 6679–6683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tahara, Y. Normal stages of development in the lamprey, Lampetra reissneri (Dybowski). Zool. Sci. 5, 109–118 (1988).

    Google Scholar 

  35. Ballard, W. W., Mellinger, J. & Lechenault, H. A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae). J. Exp. Zool. 267, 318–336 (1993).

    Article  Google Scholar 

  36. Ikuta, T., Yoshida, N., Satoh, N. & Saiga, H. Ciona intestinalis Hox gene cluster: its dispersed structure and residual colinear expression in development. Proc. Natl Acad. Sci. USA 101, 15118–15123 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, K. Y. et al. Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development. Sci. Rep. 6, 23195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pascual-Anaya, J. et al. Broken colinearity of the amphioxus Hox cluster. EvoDevo 3, 28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deschamps, J. & Duboule, D. Embryonic timing, axial stem cells, chromatin dynamics, and the Hox clock. Genes Dev. 31, 1406–1416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aronowicz, J. & Lowe, C. J. Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Integr. Comp. Biol. 46, 890–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Gonzalez, P., Uhlinger, K. R. & Lowe, C. J. The adult body plan of indirect developing hemichordates develops by adding a Hox-patterned trunk to an anterior larval territory. Curr. Biol. 27, 87–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Duboule, D. The rise and fall of Hox gene clusters. Development 134, 2549–2560 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Oisi, Y., Kakitani, O., Kuratani, S. & Ota, K. G. in In Situ Hybridization Methods (ed. Hauptmann, G.) 249–262 (Springer, New York, 2015).

  44. Sugahara, F. et al. Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain. Nature 531, 97–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Sugahara, F., Murakami, Y. & Kuratani, S. in In Situ Hybridization Methods (ed. Hauptmann, G.) 263–278 (Springer, New York, 2015).

  46. Sultan, M. et al. A simple strand-specific RNA-Seq library preparation protocol combining the Illumina TruSeq RNA and the dUTP methods. Biochem. Biophys. Res. Commun. 422, 643–646 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Chevreux, B., Wetter, T. & Suhai, S. Genome Sequence Assembly Using Trace Signals and Additional Sequence Information. In Computer Science and Biology: Proceedings of the German Conference on Bioinformatics 45–56 (GCB, 1999).

  48. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Xie, Y. et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30, 1660–1666 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hara, Y. et al. Optimizing and benchmarking de novo transcriptome sequencing: from library preparation to assembly evaluation. BMC Genom. 16, 977 (2015).

    Article  Google Scholar 

  54. Huang, S. et al. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nat. Commun. 5, 5896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  56. Macmanes, M. D. On the optimal trimming of high-throughput mRNA sequence data. Front. Genet. 5, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wild, J., Hradecna, Z. & Szybalski, W. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res. 12, 1434–1444 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bouzidi, M. F. et al. A sunflower BAC library suitable for PCR screening and physical mapping of targeted genomic regions. Theor. Appl. Genet. 113, 81–89 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Huddleston, J. et al. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 24, 688–696 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nowicki, J. L., Takimoto, R. & Burke, A. C. The lateral somitic frontier: dorso-ventral aspects of anterio-posterior regionalization in avian embryos. Mech. Dev. 120, 227–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Amemiya, C. T. et al. The amphioxus Hox cluster: characterization, comparative genomics, and evolution. J. Exp. Zool. B Mol. Dev. Evol. 310, 465–477 (2008).

    Article  PubMed  Google Scholar 

  66. Holland, L. Z. et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 18, 1100–1111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pascual-Anaya, J., D’Aniello, S. & Garcia-Fernàndez, J. Unexpectedly large number of conserved noncoding regions within the ancestral chordate Hox cluster. Dev. Genes Evol. 218, 591–597 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS  Google Scholar 

  71. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data R package version 3.0.1 (2016).

  74. RStudio Team RStudio: Integrated Development for R (2016).

  75. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).

  76. Nicolae, M. & Măndoiu, I. in Bioinformatics Research and Applications: Proc. 7th Int. Symp. ISBRA 2011. Lecture Notes in Computer Science Vol. 6674 (eds Chen, J., Wang, J. & Zelikovsky, A.) 392–403 (Springer, Berlin & Heidelberg, 2011).

Download references

Acknowledgements

We thank Y. Oisi and S. Fujimoto for providing preliminary hagfish Hox gene sequences, J. M. Martín-Durán, I. Maeso, M. Irimia and C. Böhmer for fruitful discussions, O. Kakitani for hagfish sampling, K. Shirato for shark sampling, S. Shibuya and K. Yamamoto for maintenance of aquarium tanks, S. Kuraku, K. Itomi, C. Tanegashima, K. Tatsumi and O. Nishimura at the Phyloinformatics Unit, RIKEN Center for Life Science Technologies for RNA-seq data production, J. Huddleston and E. Eichler for providing the code to mask BAC vector sequences from PacBio reads, I. Măndoiu for help using DGE-EM software, and B. Chevreaux for help with the MIRA assembler. This work was supported by the Chinese Academy of Sciences programme XDB13000000 to W.W., a Grant-in-Aid for Scientific Research (A) 15H02416 (Japan Society for the Promotion of Science), a Grant-in-Aid for Scientific Research on Innovative Areas (Research in a Proposed Research Area) 17H06384 (Ministry of Education, Culture, Sports, Science and Technology of Japan) and a Naito Grant for the Promotion of Focused Research (The Naito Foundation) to S.K. A.R.-V. holds a ‘Juan de la Cierva’ postdoctoral contract (Ministerio de Economía y Competitividad of Spain).

Author information

Authors and Affiliations

Authors

Contributions

J.P.-A. conceived the project, designed the experiments and wrote the paper. J.P.-A., F.S., S.H. and W.T. obtained the hagfish embryos. J.P.-A., I.S., F.S., S.H., W.T. and A.R.-V. performed the experiments. K.G.O. built the BAC library. Y.R. and W.W. sequenced and assembled the E. burgeri draft genome. J.P. performed the phylogenetic analyses. All authors analysed and discussed the data. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Juan Pascual-Anaya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1–3.

Reporting Summary

Supplementary Table 4

Accession numbers of sequences used for phylogenetic analyses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascual-Anaya, J., Sato, I., Sugahara, F. et al. Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates. Nat Ecol Evol 2, 859–866 (2018). https://doi.org/10.1038/s41559-018-0526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0526-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing