Homo sapiens in Arabia by 85,000 years ago

Abstract

Understanding the timing and character of the expansion of Homo sapiens out of Africa is critical for inferring the colonization and admixture processes that underpin global population history. It has been argued that dispersal out of Africa had an early phase, particularly ~130–90 thousand years ago (ka), that reached only the East Mediterranean Levant, and a later phase, ~60–50 ka, that extended across the diverse environments of Eurasia to Sahul. However, recent findings from East Asia and Sahul challenge this model. Here we show that H. sapiens was in the Arabian Peninsula before 85 ka. We describe the Al Wusta-1 (AW-1) intermediate phalanx from the site of Al Wusta in the Nefud desert, Saudi Arabia. AW-1 is the oldest directly dated fossil of our species outside Africa and the Levant. The palaeoenvironmental context of Al Wusta demonstrates that H. sapiens using Middle Palaeolithic stone tools dispersed into Arabia during a phase of increased precipitation driven by orbital forcing, in association with a primarily African fauna. A Bayesian model incorporating independent chronometric age estimates indicates a chronology for Al Wusta of ~95–86 ka, which we correlate with a humid episode in the later part of Marine Isotope Stage 5 known from various regional records. Al Wusta shows that early dispersals were more spatially and temporally extensive than previously thought. Early H. sapiens dispersals out of Africa were not limited to winter rainfall-fed Levantine Mediterranean woodlands immediately adjacent to Africa, but extended deep into the semi-arid grasslands of Arabia, facilitated by periods of enhanced monsoonal rainfall.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Al Wusta location, map of site and stratigraphy.
Fig. 2: Photographs and micro-computed tomography scans of the AW-1 H. sapiens phalanx.
Fig. 3: Scatterplot of the first two principal component scores of the geometric morphometric analysis of the AW-1 phalanx compared with a sample of primates, including hominins.
Fig. 4: Scatterplot of the first two principal component scores from the geometric morphometric analyses of AW-1 and a sample of comparative hominin second, third and fourth intermediate phalanges.
Fig. 5: Selected Al Wusta lithic artefacts.
Fig. 6: The chronological and climatic context of Al Wusta.

References

  1. 1.

    Stringer, C. The origin and evolution of Homo sapiens. Phil. Trans. R. Soc. B 371, 20150237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Hershvokitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).

    Article  Google Scholar 

  3. 3.

    Grün, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).

    Article  PubMed  Google Scholar 

  4. 4.

    Groucutt, H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. 24, 149–164 (2015).

    Article  PubMed  Google Scholar 

  5. 5.

    Petraglia, M. D. et al. Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science 317, 114–116 (2007).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Bae, C. J. & Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science 358, eaai9067 (2017).

  7. 7.

    Mellars, P., Gori, K. C., Carr, M., Soares, P. A. & Richards, M. B. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proc. Natl Acad. Sci. USA 110, 10699–10704 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Shea, J. J. Transitions or turnovers? Climatically-forced extinctions of Homo sapiens and Neanderthals in the east Mediterranean Levant. Quatern. Sci. Rev. 27, 2253–2270 (2008).

    Article  Google Scholar 

  9. 9.

    Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Pagani, L. et al. Genomic analyses inform on migration events during the peopling of Eurasia. Nature 538, 238–242 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Groucutt, H. S. et al. Stone tool assemblages and models for the dispersal of Homo sapiens out of Africa. Quatern. Int. 382, 8–30 (2015).

    Article  Google Scholar 

  12. 12.

    Demeter, F. et al. Early modern humans from Tam Pà Ling, Laos: fossil review and perspectives. Curr. Anthropol. 57, S17 (2017).

  13. 13.

    Westaway, K. E. et al. An early modern human presence in Sumatra 73,000–63,000 years ago. Nature 548, 322–325 (2017).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Michel, V. et al. The earliest modern Homo sapiens in China? J. Hum. Evol. 101, 101–104 (2016).

    Article  PubMed  Google Scholar 

  15. 15.

    Liu, W. et al. The early unequivocally modern humans in southern China? Nature 526, 696–699 (2015).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Bae, C. et al. Modern human teeth from Late Pleistocene Luna Cave (Guangxi, China). Quatern. Int. 354, 169–183 (2015).

    Article  Google Scholar 

  17. 17.

    Liu, W. et al. Human remains from Zhiredong, South China, and modern human emergence in East Asia. Proc. Natl Acad. Sci. USA 107, 19201–19206 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Martinón-Torres, M., Wu, X., de Castro, J. M. B., Xing, S. & Liu, W. Homo sapiens in the eastern Asian Late Pleistocene. Curr. Anthropol. 58, S17 (2017).

  20. 20.

    Groucutt, H. S. & Petraglia, M. D. The prehistory of Arabia: deserts, dispersals and demography. Evol. Anthropol. 21, 113–125 (2012).

  21. 21.

    Petraglia, M. D., Groucutt, H. S., Parton, A. & Alsharekh, A. Green Arabia: human prehistory at the cross-roads of continents. Quatern. Int. 382, 1–7 (2015).

  22. 22.

    Jennings, R. P. et al. The greening of Arabia: multiple opportunities for human occupation in the Arabian Peninsula during the Late Pleistocene inferred from an ensemble of climate model simulations. Quatern. Int. 205, 181–199 (2015).

  23. 23.

    Rosenberg, T. M. et al. Middle and Late Pleistocene humid periods recorded in palaeolake deposits in the Nafud desert, Saudi Arabia. Quatern. Sci. Rev. 70, 109–123 (2013).

    Article  Google Scholar 

  24. 24.

    Breeze, P. S. et al. Palaeohydrological corridors for hominin dispersals in the Middle East ~250–70,000 years ago. Quatern. Sci. Rev. 11, 155–185 (2016).

    Article  Google Scholar 

  25. 25.

    Scerri, E. M. L., Drake, N. A., Jennings, R. & Groucutt, H. S. Earliest evidence for the structure of Homo sapiens populations in Africa. Quatern. Sci. Rev. 101, 207–216 (2014).

    Article  Google Scholar 

  26. 26.

    Trinkaus, E. The Shanidar Neandertals (Academic, New York, 1981).

    Google Scholar 

  27. 27.

    McCown, T. D. & Keith, A. The Stone Age of Mount Carmel Vol. 2 (Clarendon Press, Oxford, 1939).

    Google Scholar 

  28. 28.

    Vandermeersch, B. Les Hommes Fossiles de Qafzeh (Israel) (CNRS, Paris, 1981).

    Google Scholar 

  29. 29.

    Walker, M. J., Ortega, J., López, M. V., Parmová, K. & Trinkaus, E. Neanderthal postcranial remains from the Sima de las Palomas del Cabezo Gordo, Murcia, southeastern Spain. Am. J. Phys. Anthropol. 144, 505–515 (2011).

  30. 30.

    Benjamin, M. et al. Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J. Anat. 208, 471–490 (2006).

  31. 31.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  Google Scholar 

  32. 32.

    Drake, N. A., Breeze, P. & Parker, A. Palaeoclimate in the Saharan and Arabian deserts during the Middle Palaeolithic and the potential for hominin dispersals. Quatern. Int. 300, 48–61 (2013).

  33. 33.

    Parton, A. et al. Orbital-scale climate variability in Arabia as a potential motor for human dispersals. Quatern. Int. 382, 82–97 (2015).

    Article  Google Scholar 

  34. 34.

    Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. Middle–Late Quaternary paleoclimate of northern margins of the Saharan–Arabian desert: reconstruction from speleothems of Negev desert, Israel. Quatern. Sci. Rev. 29, 2647–2662 (2010).

  35. 35.

    Grant, K. M. et al. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes. Quatern. Sci. Rev. 140, 125–141 (2016).

    Article  Google Scholar 

  36. 36.

    Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).

  37. 37.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005).

    Google Scholar 

  38. 38.

    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quatern. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  39. 39.

    Fleitmann, D., Burns, S. J., Neff, U., Mangini, A. & Matter, A. Changing moisture sources over the last 333,000 years in northern Oman from fluid-inclusion evidence in speleothems. Quatern. Res. 60, 223–232 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Rosenberg, T. M. Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39, 1115–1118 (2011).

    Article  Google Scholar 

  41. 41.

    Clark-Balzan, L., Parton., A., Breeze, P. S., Groucutt, H. S. & Petraglia, M. D. Resolving problematic luminescence chronologies for carbonate- and evaporite-rich sediments spanning multiple humid periods in the Jubbah Basin, Saudi Arabia. Quatern. Geochron. 50, 50–73 (2018).

  42. 42.

    Alonso-Zarza, A. M. Palaeoenvironmental significant of palustrine carbonates and calcretes in the geological record. Earth Sci. Rev. 60, 261–298 (2003).

    CAS  Article  Google Scholar 

  43. 43.

    Estes, R. D. The Behaviour Guide to African Mammals. (Univ. California Press, Berkeley, 1991).

    Google Scholar 

  44. 44.

    O’Regan, H. J., Turner, A., Bishop, L. C., Elton, S. & Lamb, A. L. Hominins without fellow travellers? First appearances and inferred dispersals of Afro-Eurasian large-mammals in the Plio-Pleistocene. Quatern. Sci. Rev. 30, 1343–1352 (2011).

    Article  Google Scholar 

  45. 45.

    Groucutt, H. S. et al. Human occupation of the Arabian Empty Quarter during MIS 5: evidence from Mundafan al-Buhayrah. Quatern. Sci. Rev. 119, 116–135 (2015).

    Article  Google Scholar 

  46. 46.

    Millard, A. R. A critique of the chronometric evidence for hominid fossils: I. Africa and the Near East 500–50 ka. J. Hum. Evol. 54, 848–874 (2008).

    Article  PubMed  Google Scholar 

  47. 47.

    Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Richter, D. et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293–296 (2017).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Stimpson, C. et al. Middle Pleistocene vertebrate fossils from the Nefud desert, Saudi Arabia: implications for biogeography and palaeoecology. Quatern. Sci. Rev. 143, 13–36 (2016).

    Article  Google Scholar 

  50. 50.

    O'Higgins, P. & Jones, N. Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. J. Anat. 193, 251–272 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015); http://www.R-project.org

  52. 52.

    Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).

  53. 53.

    Grün, R., Eggins, S., Kinsley, L., Mosely, H. & Sambridge, M. Laser ablation U-series analysis of fossil bones and teeth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 150–167 (2014).

    Article  Google Scholar 

  54. 54.

    Benson, A. et al. Laser ablation depth profiling of U-series and Sr isotopes in human fossils. J. Arch. Sci. 40, 2991–3000 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    Duval, M. & Grün, R. Are published ESR dose assessments on fossil tooth enamel reliable? Quat. Geochron. 31, 19–27 (2016).

    Article  Google Scholar 

  56. 56.

    Grün, R. The DATA program for the calculation of ESR age estimates on tooth enamel. Quatern. Geochron. 4, 231–232 (2009).

    Article  Google Scholar 

  57. 57.

    Grün, R., Schwarcz, H. P. & Chadam, J. ESR dating of tooth enamel: coupled correction for U-uptake and U-series disequilibrium. Int. J. Radiat. Appl. Instrum. D 14, 237–241 (1988).

  58. 58.

    Grün, R. & Katzenberger-Apel, O. An alpha irradiator for ESR dating. Anc. TL 12, 35–38 (1994).

    Google Scholar 

  59. 59.

    Marsh, R. E Beta-Gradient Isochrons Using Electron Paramagnetic Resonance: Towards a New Dating Method in Archaeology. MSc thesis, McMaster Univ. (1999).

  60. 60.

    Guérin, G., Mercier, N. & Adamiec, G. Dose-rate conversion factors: update. Anc. TL 29, 5–8 (2011).

    Google Scholar 

  61. 61.

    Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73 (2000).

    CAS  Article  Google Scholar 

  62. 62.

    Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339–364 (1999).

    Article  Google Scholar 

  63. 63.

    Bøtter-Jensen, L. & Mejdahl, V. Assessment of beta dose-rate using a GM multicounter system. Int. J. Rad. Appl. Instrum. B 14, 187–191 (1988).

    Google Scholar 

  64. 64.

    Prescott, J. R. & Hutton, J. T. Cosmic ray and gamma ray dosimetry for TL and ESR. Int. J. Rad. Appl. Instrum. D 14, 223–227 (1988).

  65. 65.

    Gale, S. & Hoare, P. Quaternary Sediments: Petrographic Methods for the Study of Unlithified Rocks (Belhaven and Halsted Press, London, 1991).

  66. 66.

    Palmer, A. P., Lee, J. A., Kemp, R. A. & Carr, S. J. Revised Laboratory Procedures for the Preparation of Thin Sections from Unconsolidated Sediments (Centre for Micromorphology Publication, Royal Holloway, Univ. London, 2008).

  67. 67.

    Kemp, R. A. Soil Micromorphology and the Quaternary (Quaternary Research Association, 1985).

  68. 68.

    Stoops, G. Interpretation of Micromorphological Features of Soils and Regoliths (Elsevier, Amsterdam, 2010).

  69. 69.

    Rengberg, I. A procedure for preparing large sets of diatom sets from sediment. J. Palaeolimnol. 4, 87–90 (1990).

    Google Scholar 

  70. 70.

    Battarbee, R. W. & Knen, M. J. The use of electronically counter microspheres in absolute diatom analysis. Limnol. Oceanogr. 27, 184–188 (1982).

    Article  Google Scholar 

  71. 71.

    Krammer, K. & Lange-Bertalot, H. Bacillariophyceae 2. Teil Epithemiaceae, Suirellaceae (Gustav-Fischer Verlag, Stuttgart, 1988).

  72. 72.

    Krammer, K. & Lange-Bertalot, H. Bacillariophyceae 3. Teil Centrales, Fragicariaceaa, Eunotiacea (Gustav-Fischer Verlag, Stuttgart, 1991).

  73. 73.

    Krammer, K. & Lange-Bertalot, H. Bacillariophyceae 4. Teil Achnanthaceae, Kritshe Ergänzungen zu Navicula (Lineolate) und Gomphonema (Gustav-Fischer Verlag, Stuttgart, 1991).

  74. 74.

    Crawford, R. M., Likhoshway, Y. V. & Jahn, R. Morphology and identity of Aulacoesiera italic and typification of Aulacoseira (Bacillariophyta). Diatom Res. 18, 1–19 (2003).

    Article  Google Scholar 

  75. 75.

    Navok, T., Guillory, W. X., Julius, M. L., Theriort, E. C. & Alverson, A. J. Towards a phylogenetic classification of species belonging to the diatom genus Cyclotella (Bacillariophyceae): transfer of species formerly placed in Puncticulata, Handmannia, Pliocaenicus and Cyclotella to the genus Lindavia. Phytotaxa 217, 249–264 (2015).

  76. 76.

    Ter Braak, C. J. F. & Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination Version 4.5 (Microcomputer Power, 2002).

  77. 77.

    Hill, M. O. & Gauch, H. G. Detrended correspondence analysis: an improved ordination technique. Plant Ecol. 42, 47–58 (1980).

    Article  Google Scholar 

  78. 78.

    Ter Braak, C. J. F. & Prentice, I. C. A theory of gradient analysis. Adv. Ecol. Res. 18, 271–317 (1988).

    Article  Google Scholar 

  79. 79.

    Ter Braak, C. J. F. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).

    Article  Google Scholar 

  80. 80.

    Smol, J. P. et al. Climate-driven regime shifts in the biological communities of arctic lakes. Proc. Natl Acad. Sci. USA 102, 4397–4402 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Birks, H. J. B. & Gordon, A. D. Numerical Methods in Quaternary Pollen Analysis (Academic, London, 1985).

  82. 82.

    Juggins, S. ZONE Software Version 1.2. (Univ. Newcastle, 1985).

  83. 83.

    Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132, 155–170 (1996).

    Article  Google Scholar 

  84. 84.

    Ryves, D. B., Juggins, S., Fritz, S. C. & Battarbee, R. W. Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172, 99–113 (2001).

    Article  Google Scholar 

  85. 85.

    Candy, I. et al. The evolution of Palaeolake Flixton and the environmental context of Starr Carr: an oxygen and carbon isotopic record of environmental change for the early Holocene. Proc. Geol. Assoc. 126, 60–71 (2015).

    Article  Google Scholar 

  86. 86.

    Domínguez-Rodrigo, M., Barba, R., De la Torre, I. & Mora, R. in Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites (eds Domínguez-Rodrigo, M. et al.) 101–125 (Springer, New York, 2007).

  87. 87.

    Bunn, H. T. Meat-Eating and Human Evolution: Studies on the Diet and Subsistence Patterns of Plio-Pleistocene Hominids in East Africa. PhD thesis, Univ. Wisconsin (1982).

  88. 88.

    Bunn, H. T. & Kroll, E. M. Systematic butchery by Pilo/Pleistocene hominids at Olduvai Gorge, Tanzania. Curr. Anthropol. 27, 431–452 (1986).

    Article  Google Scholar 

  89. 89.

    Binford, L. R. Faunal Remains from Klasies River Mouth (Academic, New York, 1984).

  90. 90.

    Andrews, P. & Cook, J. Natural modifications to bones in a temperature setting. Man 20, 675–691 (1985).

    Article  Google Scholar 

  91. 91.

    Blumenschine, R. J. & Selvaggio, M. M. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333, 763–765 (1988).

    Article  Google Scholar 

  92. 92.

    Fisher, J. W. Bone surface modifications in zooarchaeology. J. Archaeol. Method Theory 2, 7–68 (1995).

    Article  Google Scholar 

  93. 93.

    Noe-Nygaard, N. Man-made trace fossils on bones. J. Hum. Evol. 4, 461–461 (1989).

    Article  Google Scholar 

  94. 94.

    Binford, L. R. Bones: Ancient Men and Modern Myths (Academic, New York, 1981).

  95. 95.

    Stiner, M., Kuhn, S., Weiner, S. & Bar-Yosef, O. Differential burning, recrystallization, and fragmentation of archaeological bone. J. Archaeol. Sci. 22, 223–237 (1995).

    Article  Google Scholar 

  96. 96.

    Shipman, P., Foster, G. & Schoeninger, M. Bunt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci. 11, 307–325 (1984).

    Article  Google Scholar 

  97. 97.

    Tong, H. W., Zhang, S., Chen, F. & Li, Q. Rongements sélectifs des os par les porcs-épics et autres rongeurs: cas de la grotte Tianyuan, un site avec des restes humains fossiles récemment découvert près de Zhoukoudian (Choukoutien). Anthropologie 112, 353–369 (2008).

    Article  Google Scholar 

  98. 98.

    Dart, R. A. Bone tools and porcupine gnawing. Am. Anthropol. 60, 715–724 (1958).

    Article  Google Scholar 

  99. 99.

    Behrensmeyer, A. K. Taphonomic and ecological information from bone weathering. Paleobiology 4, 150–162 (1978).

    Article  Google Scholar 

  100. 100.

    Behrensmeyer, A. K., Gordon, K. & Yanagi, G. T. Trampling as a cause of bone surface damage and psuedo-cutmarks. Nature 319, 402–403 (1986).

    Article  Google Scholar 

  101. 101.

    Villa, P. & Mahieu, E. Breakage pattern of human long bones. J. Hum. Evol. 21, 27–48 (1991).

    Article  Google Scholar 

  102. 102.

    Bunn, H. T. in Animals and Archaeology Vol. 1 (eds Clutton-Brock, J. & Grigson, C.) 143–148 (BAR International Series 163, Oxford, 1983).

  103. 103.

    Scerri, E. M. L., Groucutt, H. S., Jennings, R. P. & Petraglia, M. D. Unexpected technological heterogeneity in northern Arabia indicates complex Late Pleistocene demography at the gateway to Asia. J. Hum. Evol. 75, 125–142 (2014).

    Article  PubMed  Google Scholar 

  104. 104.

    Scerri, E. M. L., Gravina, B., Blinkhorn, J. & Delagnes, A. Can lithic attribute analyses identify discrete reduction trajectories? A quantitative study using refitted lithic sets. J. Arch. Method Theory 23, 669–691 (2016).

    Article  Google Scholar 

  105. 105.

    Groucutt, H. S. et al. Late Pleistocene lakeshore settlement in northern Arabia: Middle Palaeolithic technology from Jebel Katefeh, Jubbah. Quatern. Int. 382, 215–236 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank HRH Prince Sultan bin Salman bin Abdulaziz Al-Saud, President of the Saudi Commission for Tourism and National Heritage (SCTH), and A. Ghabban, Vice President of the SCTH for permission to carry out this study. Z. Nawab, President of the Saudi Geological Survey, provided research support and logistics. Fieldwork and analyses were funded by the European Research Council (no. 295719, to M.D.P. and 617627, to J.T.S.), the SCTH, the British Academy (H.S.G. and E.M.L.S.), The Leverhulme Trust, the Australian Research Council (DP110101415 to R.G., ARC Future Fellowship Grant FT150100215 to M.D., and FT160100450 to J.L.), European Union Marie Curie International Outgoing Fellowship (PIOF-GA-2013-626474, to M.D.), and the Research Council of Norway (SFF Centre for Early Sapiens Behaviour, 262618). We thank P. Cuthbertson, K. Janulis, M. Bernal, S. Al-Soubhi, M. Haptari, A. Matari and Y. Al-Mufarreh for assistance in the field. We thank I. Cartwright (Institute of Archaeology, University of Oxford) for the photographs of AW-1 (Fig. 2a), I. Matthews (RHUL) for producing the Bayesian age model and M. O’Reilly (MPI-SHH) for assistance with the preparation of figures. We acknowledge the Max Planck Society for supporting us with comparative fossil data, and we thank curators for access to comparative extant and fossil material in their care (Supplementary Tables 5 and 7). Maps were created using ArcGIS software by Esri.

Author information

Affiliations

Authors

Contributions

H.S.G. and M.D.P. designed, coordinated and supervised the study. H.S.G., I.S.A.Z., N.A.D., S.J.A., I.C., R.C.-W., J.L., P.S.B., M.S., G.J.P., A.A., A.A.-O., M.Z., A.M.M, K.S.M.A, B.Z, E.M.L.S and M.D.P conducted excavation, survey and multidisciplinary sampling at Al Wusta. L.T.B., T.L.K., E.P., N.B.S. and J.T.S. conducted the morphological analysis and comparative study of the AW-1 phalanx. R.G., M.D. and L.K. carried out the U-series and ESR analyses. S.J.A. and R.C.-W carried out the OSL dating. I.C. and R.C.-W conducted the stratigraphic and sedimentological analysis of the site, with input from N.A.D., J.L. and G.J.P. W.W.S. analysed the diatoms. M.S. and J.L. analysed the vertebrate fossils, with input from G.J.P. Lithic analysis was conducted by H.S.G. and E.M.L.S. Spatial analyses were conducted by P.S.B. All authors helped to write the paper.

Corresponding authors

Correspondence to Huw S. Groucutt or Michael D. Petraglia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, references, tables and figures.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Groucutt, H.S., Grün, R., Zalmout, I.A.S. et al. Homo sapiens in Arabia by 85,000 years ago. Nat Ecol Evol 2, 800–809 (2018). https://doi.org/10.1038/s41559-018-0518-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing