Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The spatial scaling of species interaction networks

Abstract

Species–area relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial scales. We know little, however, about how the network of biotic interactions in which biodiversity is embedded changes with spatial extent. Here we develop a new theoretical framework that enables us to explore how different assembly mechanisms and theoretical models affect multiple properties of ecological networks across space. We present a number of testable predictions on network–area relationships (NARs) for multi-trophic communities. Network structure changes as area increases because of the existence of different SARs across trophic levels, the preferential selection of generalist species at small spatial extents and the effect of dispersal limitation promoting beta-diversity. Developing an understanding of NARs will complement the growing body of knowledge on SARs with potential applications in conservation ecology. Specifically, combined with further empirical evidence, NARs can generate predictions of potential effects on ecological communities of habitat loss and fragmentation in a changing world.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2: Mechanisms underlying NARs.
Fig. 3: NARs for the trophic sampling model.
Fig. 4: Specialism across spatial scales.
Fig. 5: Comparison between models.

References

  1. Arrhenius, O. Species and area. J. Ecol. 9, 95–99 (1921).

    Article  Google Scholar 

  2. Rosenzweig, M. L. Species Diversity in Space and Time. (Cambridge Univ. Press: Cambridge, 1995).

  3. Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).

    Article  Google Scholar 

  4. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. (Princeton Univ. Press: Princeton, 1967).

  5. Connor, E. F. & McCoy, E. D. The statistics and biology of the species–area relationship. Am. Nat. 113, 791–833 (1979).

    Article  Google Scholar 

  6. Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    CAS  Article  PubMed  Google Scholar 

  7. Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).

    Article  Google Scholar 

  8. Rybicki, J. & Hanski, I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16, 27–38 (2013).

    Article  PubMed  Google Scholar 

  9. Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. Trophic rank and the species–area relationship. Ecology 80, 1495–1504 (1999).

    Article  Google Scholar 

  10. Roslin, T., Várkonyi, G., Koponen, M., Vikberg, V. & Nieminen, M. Species–area relationships across four trophic levels – decreasing island size truncates food chains. Ecography 37, 443–453 (2014).

    Google Scholar 

  11. Schuldt, A. et al. Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales. Nat. Commun. 6, 10169 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Ryberg, W. A. & Chase, J. M. Predator-dependent species–area relationships. Am. Nat. 170, 636–642 (2007).

    PubMed  Google Scholar 

  13. Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).

    Article  PubMed  Google Scholar 

  14. Amarasekare, P. Spatial dynamics of foodwebs. Annu. Rev. Ecol. Evol. Syst. 39, 479–500 (2008).

    Article  Google Scholar 

  15. Lafferty, K. D. & Dunne, J. A. Stochastic ecological network occupancy (SENO) models: a new tool for modeling ecological networks across spatial scales. Theor. Ecol. 3, 123–135 (2010).

    Article  Google Scholar 

  16. Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).

    Article  PubMed  Google Scholar 

  17. McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).

    CAS  Article  PubMed  Google Scholar 

  18. Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 428, 167–171 (2004).

    CAS  Article  PubMed  Google Scholar 

  19. Thompson, R. M. & Townsend, C. R. Food-web topology varies with spatial scale in a patchy environment. Ecology 86, 1916–1925 (2005).

    Article  Google Scholar 

  20. Pillai, P., Gonzalez, A. & Loreau, M. Metacommunity theory explains the emergence of food web complexity. Proc. Natl Acad. Sci. USA 108, 19293–19298 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Wood, S. A., Russell, R., Hanson, D., Williams, R. J. & Dunne, J. A. Effects of spatial scale of sampling on food web structure. Ecol. Evol. 5, 3769–3782 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).

    CAS  Article  PubMed  Google Scholar 

  23. Cohen, J. E. & Newman, C. M. When will a large complex system be stable? J. Theor. Biol. 113, 153–156 (1985).

    Article  Google Scholar 

  24. Pimm, S. L. Food Webs 1–11 (Univ. Chicago Press, Chicago, 1982).

  25. Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).

    Article  Google Scholar 

  26. Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).

    Article  Google Scholar 

  27. Montoya, J. M. & Sole, R. V. Topological properties of food webs: from real data to community assembly models. Oikos 102, 614–622 (2003).

    Article  Google Scholar 

  28. Ings, T. C. et al. Ecological networks – beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).

    Article  PubMed  Google Scholar 

  29. Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).

    CAS  Article  PubMed  Google Scholar 

  30. Holt, R. D. in The Theory of Island Biogeography Revisited (eds Losos, J. B. & Ricklefs, R. E.) 143–185 (Princeton Univ. Press, Princeton, 2009).

  31. Holt, R. in Food Webs: Integration of Patterns and Dynamics (eds Polis, G. & Winemiller, K.) 313–323 (Springer, Boston, 1996).

  32. Cazelles, K., Mouquet, N., Mouillot, D. & Gravel, D. On the integration of biotic interaction and environmental constraints at the biogeographical scale. Ecography 39, 921–931 (2016).

    Article  Google Scholar 

  33. Hanski, I. Metapopulation Ecology (Oxford Univ. Press, New York, 1999).

  34. LandeR., Engen, S. & Sether, B. E. Stochastic Population Dynamics in Ecology and Conservation. (Oxford Univ. Press: New York, 2003).

  35. Piechnik, D. A., Lawler, S. P. & Martinez, N. D. Food-web assembly during a classic biogeographic study: species’ ‘trophic breadth’ corresponds to colonization order. Oikos 117, 665–674 (2008).

    Article  Google Scholar 

  36. Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).

    Article  PubMed  Google Scholar 

  37. He, F. & Hubbell, S. P. Species–area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011).

    CAS  Article  PubMed  Google Scholar 

  38. Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).

    Article  Google Scholar 

  39. Garcillán, P. P. & Ezcurra, E. Biogeographic regions and β-diversity of woody dryland legumes in the Baja California peninsula. J. Veg. Sci. 14, 859–868 (2003).

    Article  Google Scholar 

  40. Bengtsson, J. Confounding variables and independent observations in comparative analyses of food webs. Ecology 75, 1282–1288 (1994).

    Article  Google Scholar 

  41. Martinez, N. D. Scale-dependent constraints on food-web structure. Am. Nat. 144, 935–953 (1994).

    Article  Google Scholar 

  42. Martinez, N. D. & Lawton, J. H. Scale and food-web structure: from local to global. Oikos 73, 148–154 (1995).

    Article  Google Scholar 

  43. Dunne, J. A. et al. Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol. 11, e1001579 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B 268, 2039–2045 (2001).

    CAS  Article  Google Scholar 

  45. Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).

    CAS  Article  PubMed  Google Scholar 

  47. Mouquet, N. & Loreau, M. Community patterns in source–sink metacommunities. Am. Nat. 162, 544–557 (2003).

    Article  PubMed  Google Scholar 

  48. Cadotte, M. W. Dispersal and species diversity: a meta-analysis. Am. Nat. 167, 913–924 (2006).

    PubMed  Google Scholar 

  49. Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).

    Article  Google Scholar 

  50. Cadotte, M. W. Competition–colonization trade-offs and disturbance effects at multiple scales. Ecology 88, 823–829 (2007).

    Article  PubMed  Google Scholar 

  51. Calcagno, V., Mouquet, N., Jarne, P. & David, P. Coexistence in a metacommunity: the competition–colonization trade-off is not dead. Ecol. Lett. 9, 897–907 (2006).

    CAS  Article  PubMed  Google Scholar 

  52. Amarasekare, P. & Nisbet, R. M. Spatial heterogeneity, source–sink dynamics, and the local coexistence of competing species. Am. Nat. 158, 572–584 (2001).

    CAS  PubMed  Google Scholar 

  53. Mouquet, N., Miller, T. E., Daufresne, T. & Kneitel, J. M. Consequences of varying regional heterogeneity in source–sink metacommunities. Oikos 113, 481–488 (2006).

    Article  Google Scholar 

  54. Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 12457 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Post, D. M. The long and short of food-chain length. Trends Ecol. Evol. 17, 269–277 (2002).

    Article  Google Scholar 

  56. Post, D. M. Testing the productive-space hypothesis: rational and power. Oecologia 153, 973–984 (2007).

    Article  PubMed  Google Scholar 

  57. Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).

    Article  Google Scholar 

  58. Guimerà, R. et al. Origin of compartmentalization in food webs. Ecology 91, 2941–2951 (2010).

    Article  PubMed  Google Scholar 

  59. Pimm, S. L. & Raven, P. Biodiversity: extinction by numbers. Nature 403, 843–845 (2000).

    CAS  Article  PubMed  Google Scholar 

  60. Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article  Google Scholar 

  61. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Melian, C. J. & Bascompte, J. Food web structure and habitat loss. Ecol. Lett. 5, 37–46 (2002).

    Article  Google Scholar 

  63. Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

    CAS  Article  PubMed  Google Scholar 

  64. Gonzalez, A., Rayfield, B. & Lindo, Z. The disentangled bank: how loss of habitat fragments and disassembles ecological networks. Am. J. Bot. 98, 503–516 (2011).

    Article  PubMed  Google Scholar 

  65. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  Article  PubMed  Google Scholar 

  66. Fortuna, M. A., Krishna, A. & Bascompte, J. Habitat loss and the disassembly of mutalistic networks. Oikos 122, 938–942 (2013).

    Article  Google Scholar 

  67. Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).

    Article  PubMed  Google Scholar 

  68. Poisot, T., Bever, J. D., Nemri, A., Thrall, P. H. & Hochberg, M. E. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14, 841–851 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Canard, E. et al. Emergence of structural patterns in neutral trophic networks. PLoS ONE 7, e38295 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Vázquez, D. P. Degree distribution in plant–animal mutualistic networks: forbidden links or random interactions? Oikos 108, 421–426 (2005).

    Article  Google Scholar 

  71. McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS  Article  PubMed  Google Scholar 

  72. Neutel, A.-M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).

    CAS  Article  PubMed  Google Scholar 

  73. Kondoh, M. Building trophic modules into a persistent food web. Proc. Natl Acad. Sci. USA 105, 16631–16635 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. McCann, K. S., Hastings, A., Huxel, G. R. & Fig, T. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    CAS  Article  Google Scholar 

  75. Bascompte, J., Melián, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl Acad. Sci. USA 102, 5443–5447 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We warmly thank J.-F. Arnoldi, M. Barbier and B. Haegeman for numerous discussions and critical reading of preliminary drafts, which improved the quality of this paper. This work was funded in part through the French Laboratory of Excellence Project ‘TULIP’ (ANR-10-LABX-41; ANR-11-IDEX-002-02), by a Region Midi-Pyrénées Project (CNRS 121090), by a grant from the Canadian Institute of Ecology and Evolution, and by the NEWFORESTS project.

Author information

Authors and Affiliations

Authors

Contributions

N.G., D.G., B.C. and J.M.M. designed research. N.G., M.L., D.G. and J.M.M. conducted research and contributed to the models. N.G., D.G. and J.M.M. wrote the paper, and all authors contributed to editing and discussion.

Corresponding author

Correspondence to José M. Montoya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–3, Supplementary Figures 1–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galiana, N., Lurgi, M., Claramunt-López, B. et al. The spatial scaling of species interaction networks. Nat Ecol Evol 2, 782–790 (2018). https://doi.org/10.1038/s41559-018-0517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0517-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing