A guide to ancient protein studies


Palaeoproteomics is an emerging neologism used to describe the application of mass spectrometry-based approaches to the study of ancient proteomes. As with palaeogenomics (the study of ancient DNA), it intersects evolutionary biology, archaeology and anthropology, with applications ranging from the phylogenetic reconstruction of extinct species to the investigation of past human diets and ancient diseases. However, there is no explicit consensus at present regarding standards for data reporting, data validation measures or the use of suitable contamination controls in ancient protein studies. Additionally, in contrast to the ancient DNA community, no consolidated guidelines have been proposed by which researchers, reviewers and editors can evaluate palaeoproteomics data, in part due to the novelty of the field. Here we present a series of precautions and standards for ancient protein research that can be implemented at each stage of analysis, from sample selection to data interpretation. These guidelines are not intended to impose a narrow or rigid list of authentication criteria, but rather to support good practices in the field and to ensure the generation of robust, reproducible results. As the field grows and methodologies change, so too will best practices. It is therefore essential that researchers continue to provide necessary details on how data were generated and authenticated so that the results can be independently and effectively evaluated. We hope that these proposed standards of practice will help to provide a firm foundation for the establishment of palaeoproteomics as a viable and powerful tool for archaeologists, anthropologists and evolutionary biologists.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2: Schematic depiction of ancient proteome compositional changes through time.
Fig. 3: Injection blanks in LC–MS/MS.
Fig. 4: Damage-induced sequence ambiguity affects peptide taxonomic assignment for the whey protein beta-lactoglobulin.

Change history

  • 04 June 2018

    In the version of this Perspective originally published, in the third paragraph of the section ‘Selection and sampling’, the sentence beginning ‘Pyrolysis–gas chromatography’ should have also referred to high-performance liquid chromatography; the sentence has now been amended to read ‘Pyrolysis–gas chromatography/mass spectrometry (py–GC/MS) and high-performance liquid chromatography (HPLC) can be used to detect the presence of amino acids62 in any putative proteinaceous sample.’


  1. 1.

    Cappellini, E. et al. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J. Proteome Res. 11, 917–926 (2012).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Cappellini, E. et al. Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zool. J. Linn. Soc. 170, 222–232 (2014).

    Article  Google Scholar 

  3. 3.

    Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Welker, F. et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522, 81–84 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Rybczynski, N. et al. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution. Nat. Commun. 4, 1550 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Cleland, T. P., Schroeter, E. R., Feranec, R. S. & Vashishth, D. Peptide sequences from the first Castoroides ohioensis skull and the utility of old museum collections for palaeoproteomics. Proc. Biol. Sci. 283, 20160593 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad. Sci. USA 113, 11162–11167 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Demarchi, B. et al. Protein sequences bound to mineral surfaces persist into deep time. Elife 5, e17092 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Hill, R. C. et al. Preserved proteins from extinct Bison latifrons identified by tandem mass spectrometry; hydroxylysine glycosides are a common feature of ancient collagen. Mol. Cell. Proteom. 14, 1946–1958 (2015).

    Article  CAS  Google Scholar 

  10. 10.

    Cleland, T. P., Schroeter, E. R. & Schweitzer, M. H. Biologically and diagenetically derived peptide modifications in moa collagens. Proc. R. Soc. B 282, 20150015 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Mikšík, I., Sedláková, P., Pataridis, S., Bortolotti, F. & Gottardo, R. Proteins and their modifications in a medieval mummy. Protein Sci. 25, 2037–2044 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Warinner, C. et al. Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 4, 7104 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Corthals, A. et al. Detecting the immune system response of a 500 year-old Inca mummy. PLoS ONE 7, e41244 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Maixner, F. et al. Paleoproteomic study of the Iceman’s brain tissue. Cell. Mol. Life Sci. 70, 3709–3722 (2013).

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Kendall, R., Hendy, J., Collins, M. J., Millard, A. R. & Gowland, R. L. Poor preservation of antibodies in archaeological human bone and dentine. STAR 2, 15–24 (2016).

    Article  Google Scholar 

  16. 16.

    Hendy, J. et al. The challenge of identifying tuberculosis proteins in archaeological tissues. J. Archaeol. Sci. 66, 146–153 (2016).

    Article  CAS  Google Scholar 

  17. 17.

    Buckley, M., Collins, M. J., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3843–3854 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Holstein, I. C. C. et al. Searching for Scandinavians in pre-Viking Scotland: molecular fingerprinting of early medieval combs. J. Archaeol. Sci. 41, 1–6 (2014).

    Article  CAS  Google Scholar 

  19. 19.

    Stewart, N. A. et al. The identification of peptides by nanoLC-MS/MS from human surface tooth enamel following a simple acid etch extraction. RSC Adv. 6, 61673–61679 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    Stewart, J. R. M., Allen, R. B., Jones, A. K. G., Penkman, K. E. H. & Collins, M. J. ZooMS: making eggshell visible in the archaeological record. J. Archaeol. Sci. 40, 1797–1804 (2013).

    Article  CAS  Google Scholar 

  21. 21.

    Warinner, C., Speller, C. & Collins, M. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos. Trans. R. Soc. B 370, 20130376 (2015).

    Article  CAS  Google Scholar 

  22. 22.

    Cappellini, E. et al. A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97, 205–217 (2010).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Shevchenko, A. et al. Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. J. Proteom. 105, 363–371 (2014).

    Article  CAS  Google Scholar 

  24. 24.

    Yang, Y. et al. Proteomics evidence for kefir dairy in early Bronze Age China. J. Archaeol. Sci. 45, 178–186 (2014).

    Article  CAS  Google Scholar 

  25. 25.

    Xie, M. et al. Identification of a dairy product in the grass woven basket from Gumugou Cemetery (3800 BP, northwestern China). Quat. Int. 426, 158–165 (2016).

    Article  Google Scholar 

  26. 26.

    Craig, O. E. et al. Detecting milk proteins in ancient pots. Nature 408, 312 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Solazzo, C., Fitzhugh, W. W., Rolando, C. & Tokarski, C. Identification of protein remains in archaeological potsherds by proteomics. Anal. Chem. 80, 4590–4597 (2008).

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Buckley, M., Melton, N. D. & Montgomery, J. Proteomics analysis of ancient food vessel stitching reveals > 4000-year-old milk protein. Rapid Commun. Mass Spectrom. 27, 531–538 (2013).

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Dallongeville, S. et al. Proteomics applied to the authentication of fish glue: application to a 17th century artwork sample. Analyst 138, 5357–5364 (2013).

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Dallongeville, S. et al. Identification of animal glue species in artworks using proteomics: application to a 18th century gilt sample. Anal. Chem. 83, 9431–9437 (2011).

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Solazzo, C. et al. Identification of the earliest collagen- and plant-based coatings from Neolithic artefacts (Nahal Hemar cave, Israel). Sci. Rep. 6, 31053 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Hynek, R., Kuckova, S. & Hradilova, J. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings. Rapid Commun. Mass Spectrom. 18, 1896–1900 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Tokarski, C., Martin, E., Rolando, C. & Cren-Olivé, C. Identification of proteins in renaissance paintings by proteomics. Anal. Chem. 78, 1494–1502 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Tripković, T. et al. Electrospray ionization linear trap quadrupole Orbitrap in analysis of old tempera paintings: application to nineteenth-century Orthodox icons. Eur. J. Mass Spectrom. 21, 679–692 (2015).

    Article  CAS  Google Scholar 

  35. 35.

    Brandt, L. Ø. et al. Species identification of archaeological skin objects from Danish bogs: comparison between mass spectrometry-based peptide sequencing and microscopy-based methods. PLoS ONE 9, e106875 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Gong, Y., Li, L., Gong, D., Yin, H. & Zhang, J. Biomolecular evidence of silk from 8,500 years ago. PLoS ONE 11, e0168042 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Fiddyment, S. et al. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting. Proc. Natl Acad. Sci. USA 112, 15066–15071 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Kuckova, S., Hynek, R. & Kodicek, M. Application of peptide mass mapping on proteins in historical mortars. J. Cult. Herit. 10, 244–247 (2009).

    Article  Google Scholar 

  39. 39.

    Krizkova, M. C., Kuckova, S. H., Santrucek, J. & Hynek, R. Peptide mass mapping as an effective tool for historical mortar analysis. Constr. Build. Mater. 50, 219–225 (2014).

    Article  Google Scholar 

  40. 40.

    Rao, H., Li, B., Yang, Y., Ma, Q. & Wang, C. Proteomic identification of organic additives in the mortars of ancient Chinese wooden buildings. Anal. Methods 7, 143–149 (2014).

    Article  CAS  Google Scholar 

  41. 41.

    Oonk, S., Cappellini, E. & Collins, M. J. Soil proteomics: an assessment of its potential for archaeological site interpretation. Org. Geochem. 50, 57–67 (2012).

    Article  CAS  Google Scholar 

  42. 42.

    Abelson, P. H. Amino acids in fossils. Science 119, 576 (1954).

    Article  Google Scholar 

  43. 43.

    Hare, E. & Abelson, P. H. Racemization of amino acids in fossil shells. Carnegie Inst. Wash. Yearbook 66, 526–528 (1968).

    Google Scholar 

  44. 44.

    Schroeder, R. A. & Bada, J. L. A review of the geochemical applications of the amino acid racemization reaction. Earth Sci. Rev. 12, 347–391 (1976).

    Article  CAS  Google Scholar 

  45. 45.

    Hoering, T. C. in Biogeochemistry of Amino Acids (eds Hare, P. E., Hoering, T. C. & King, K.) 193–201 (Wiley, New York, 1980).

  46. 46.

    Goodfriend, G. A Perspectives in Amino Acid and Protein Geochemistry. (Oxford Univ. Press: Oxford, 2000).

    Google Scholar 

  47. 47.

    Miller, M. F.II. & Wyckoff, R. W. Proteins in dinosaur bones. Proc. Natl Acad. Sci. USA176 60, 176–178 (1968).

    Article  CAS  Google Scholar 

  48. 48.

    Tower, K. M. in Biogeochemistry of Amino Acids (eds Hare, P. E., Hoering, T. C. & King, K. Jr) 65–74 (Wiley, New York, 1980).

  49. 49.

    Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Buckley, M., Warwood, S., van DongenB., Kitchener, A. C. & Manning, P. L. A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination. Proc. Biol. Sci. 284, 20170544 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. 52.

    Instructions to Authors Regarding Required Manuscript Content and Publication Guidelines for Molecular and Cellular Proteomics (American Society for Biochemistry and Molecular Biology, 2017); http://www.mcponline.org/site/misc/ms_guidelines.xhtml

  53. 53.

    Gilbert, M. T. P., Bandelt, H.-J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. 20, 541–544 (2005).

    Article  PubMed  Google Scholar 

  54. 54.

    van Doorn, N. L., Hollund, H. & Collins, M. J. A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction. Archaeol. Anthropol. Sci. 3, 281–289 (2011).

    Article  Google Scholar 

  55. 55.

    Manfredi, M. et al. Method for noninvasive analysis of proteins and small molecules from ancient objects. Anal. Chem. 89, 3310–3317 (2017).

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Teasdale, M. D. et al. The York Gospels: a 1000-year biological palimpsest. R. Soc. Open Sci 4, 170988 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Tokarski, C., Martin, E., Rolando, C. & Cren-Olivé, C. Identification of proteins in renaissance paintings by proteomics. Anal. Chem. 78, 1494–1502 (2006).

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).

    Article  CAS  Google Scholar 

  59. 59.

    Collins, M. J. et al. The survival of organic matter in bone: a review. Archaeometry 44, 383–394 (2002).

    Article  CAS  Google Scholar 

  60. 60.

    Demarchi, B. et al. Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system. Quat. Geochronol. 16, 144–157 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. 61.

    Mackie, M. et al. Preservation of the metaproteome: variability of protein preservation in ancient dental calculus. STAR 3, 74–86 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Stankiewicz, A. B. et al. Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis/gas chromatography and pyrolysis/gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1747–1757 (1996).

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Saitta, E. T. et al. Low fossilization potential of keratin protein revealed by experimental taphonomy. Palaeontology 60, 547–556 (2017).

    Article  Google Scholar 

  64. 64.

    Keck, S. & Peters, T. Identification of protein-containing paint media by quantitative amino acid analysis. Stud. Conserv. 14, 75–82 (1969).

    CAS  Google Scholar 

  65. 65.

    Wyckoff, R. W., Wagner, E., Matter, P. III & Doberenz, A. R. Collagen in fossil bone. Proc. Natl Acad. Sci. USA 50, 215–218 (1963).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. 66.

    Brock, F., Geoghegan, V., Thomas, B., Jurkschat, K. & Higham, T. F. G. Analysis of bone ‘collagen’ extraction products for radiocarbon dating. Radiocarbon 55, 445–463 (2013).

    Article  CAS  Google Scholar 

  67. 67.

    van Doorn, N. L., Wilson, J., Hollund, H., Soressi, M. & Collins, M. J. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration. Rapid Commun. Mass Spectrom. 26, 2319–2327 (2012).

    Article  PubMed  CAS  Google Scholar 

  68. 68.

    Simpson, J. P. et al. The effects of demineralisation and sampling point variability on the measurement of glutamine deamidation in type I collagen extracted from bone. J. Archaeol. Sci. 69, 29–38 (2016).

    Article  CAS  Google Scholar 

  69. 69.

    Schellmann, N. C. Animal glues: a review of their key properties relevant to conservation. Stud. Conserv 52, 55–66 (2007).

    Article  Google Scholar 

  70. 70.

    Hodge, K., Have, S. T., Hutton, L. & Lamond, A. I. Cleaning up the masses: exclusion lists to reduce contamination with HPLC-MS/MS. J. Proteom. 88, 92–103 (2013).

    Article  CAS  Google Scholar 

  71. 71.

    Wiktorowicz, C. J., Arnold, B., Wiktorowicz, J. E., Murray, M. L. & Kurosky, A. Hemorrhagic fever virus, human blood, and tissues in Iron Age mortuary vessels. J. Archaeol. Sci. 78, 29–39 (2017).

    Article  CAS  Google Scholar 

  72. 72.

    Bergeron, É. et al. Recovery of recombinant Crimean Congo hemorrhagic fever virus reveals a function for non-structural glycoproteins cleavage by furin. PLoS Pathog 11, e1004879 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. 73.

    Welker, F. et al. Variations in glutamine deamidation for a Ch telperronian bone assemblage as measured by peptide mass fingerprinting of collagen. STAR 3, 15–27 (2017).

    Article  Google Scholar 

  74. 74.

    Sawafuji, R. et al. Proteomic profiling of archaeological human bone. R. Soc. Open Sci. 4, 161004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Sykes, G. A., Collins, M. J. & Walton, D. I. The significance of a geochemically isolated intracrystalline organic fraction within biominerals. Org. Geochem. 23, 1059–1065 (1995).

    Article  CAS  Google Scholar 

  76. 76.

    Penkman, K. E. H., Kaufman, D. S., Maddy, D. & Collins, M. J. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quat. Geochronol. 3, 2–25 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. 77.

    Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 5, 11184 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

    PubMed  Article  Google Scholar 

  79. 79.

    Ginolhac, A. et al. Improving the performance of true single molecule sequencing for ancient DNA. BMC Genom. 13, 177 (2012).

    Article  CAS  Google Scholar 

  80. 80.

    Demarchi, B. & Collins, M. in Encyclopedia of Scientific Dating Methods (eds Rink, J. W. & Thompson, J.) 1–22 (Springer Netherlands, Dordrecht, 2014).

  81. 81.

    Jiang, X. et al. Method development of efficient protein extraction in bone tissue for proteome analysis. J. Proteome Res. 6, 2287–2294 (2007).

    Article  PubMed  CAS  Google Scholar 

  82. 82.

    Wadsworth, C. & Buckley, M. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun. Mass Spectrom. 28, 605–615 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. 83.

    Wadsworth, C. & Buckley, M. Characterization of proteomes extracted through collagen-based stable isotope and radiocarbon dating methods. J. Proteome Res. 17, 429–439 (2018).

    Article  PubMed  CAS  Google Scholar 

  84. 84.

    Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article  PubMed  CAS  Google Scholar 

  85. 85.

    Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  PubMed  CAS  Google Scholar 

  86. 86.

    Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. 87.

    Fischer, R. & Kessler, B. M. Gel-aided sample preparation (GASP)-A simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells. Proteomics 15, 1224–1229 (2014).

    Article  CAS  Google Scholar 

  88. 88.

    Colonese, A. C. et al. New criteria for the molecular identification of cereal grains associated with archaeological artefacts. Sci. Rep. 7, 6633 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. 89.

    Procopio, N. & Buckley, M. Minimizing laboratory-induced decay in bone proteomics. J. Proteome Res. 16, 447–458 (2017).

    Article  PubMed  CAS  Google Scholar 

  90. 90.

    Schroeter, E. R., DeHart, C. J., Schweitzer, M. H., Thomas, P. M. & Kelleher, N. L. Bone protein ‘extractomics’: comparing the efficiency of bone protein extractions of Gallus gallus in tandem mass spectrometry, with an eye towards paleoproteomics. PeerJ 4, e2603 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Taylor, C. F. et al. Guidelines for reporting the use of mass spectrometry in proteomics. Nat. Biotechnol. 26, 860–861 (2008).

    Article  PubMed  CAS  Google Scholar 

  92. 92.

    Taylor, G. K. & Goodlett, D. R. Rules governing protein identification by mass spectrometry. Rapid Commun. Mass Spectrom. 19, 3420 (2005).

    Article  PubMed  CAS  Google Scholar 

  93. 93.

    Picotti, P., Aebersold, R. & Domon, B. The implications of proteolytic background for shotgun proteomics. Mol. Cell. Proteom. 6, 1589–1598 (2007).

    Article  CAS  Google Scholar 

  94. 94.

    Burkhart, J. M., Schumbrutzki, C., Wortelkamp, S., Sickmann, A. & Zahedi, R. P. Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J. Proteom. 75, 1454–1462 (2012).

    Article  CAS  Google Scholar 

  95. 95.

    Kim, J.-S., Monroe, M. E., Camp, D. G. II, Smith, R. D. & Qian, W.-J. In-source fragmentation and the sources of partially tryptic peptides in shotgun proteomics. J. Proteome Res. 12, 910–916 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. 96.

    cRAP Protein Sequences (The Global Proteome Machine Organization, accessed 1 June 2017); http://www.thegpm.org/crap

  97. 97.

    Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. 98.

    Penkman, K. & Kaufman, D. Amino acid geochronology: recent perspectives. Quat. Geochronol. 16, 1–2 (2013).

    Article  Google Scholar 

  99. 99.

    Welker, F. et al. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae. PeerJ 5, e3033 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. 100.

    Breci, L. A., Tabb, D. L., Yates, J. R. III & Wysocki, V. H. Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 75, 1963–1971 (2003).

    Article  PubMed  CAS  Google Scholar 

  101. 101.

    Schroeter, E. R. et al. Expansion for the Brachylophosaurus canadensis collagen I sequence and additional evidence of the preservation of cretaceous protein. J. Proteome Res. 16, 920–932 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. 102.

    Recommended Data Repositories (Scientific Data, accessed 30 May 2017); https://www.nature.com/sdata/policies/repositories

  103. 103.

    Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. 104.

    Anagnostou, P. et al. When data sharing gets close to 100%: what human paleogenetics can teach the open science movement. PLoS ONE 10, e0121409 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. 105.

    Welker, F. The Palaeoproteomic Identification of Pleistocene Hominin Skeletal Remains: Towards a Biological Understanding of the Middle to Upper Palaeolithic Transition. PhD thesis, Max Planck Institute for Evolutionary Anthropology (2017).

Download references


We thank E. Cappellini for valuable comments on a previous version of the manuscript. We are grateful to K. Penkman, J. Thomas-Oates, J. Wilson and R. Fischer, as well as C. Trachsel and J. Grossmann (Functional Genomics Center Zürich) for support and helpful discussions. This research was supported by the Max Planck Society (J.H., F.W. and C.W.) and its Donation Award (to J.H. and C.W.), the US National Science Foundation BCS-1516633, BCS-1523264, and BCS-1643318 (to C.W.), the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreement numbers STG 678901-FOODTRANSFORMS and STG-677576-HARVEST, the ‘Rita Levi-Montalcini Young Researchers Programme’ (to B.D.), the Wellcome Trust (grant no 108375/Z/15/Z), the Leverhulme Trust (Philip Leverhulme Prize) (to C.S.), the VILLUM FONDEN (grant no 17649), a Danish National Research Foundation Niels Bohr Professorship and ERC Investigator Grant 295729-CodeX (to M.J.C) and the US National Institutes of Health R01GM089886 (to C.W.).

Author information




J.H. and F.W. conceived the manuscript. All authors wrote and contributed to the main text.

Corresponding authors

Correspondence to Jessica Hendy or Frido Welker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Guide to Supplementary Material

Supplementary Data 1

FASTA formatted file containing proteins (in)frequently identified as likely contaminants in standard palaeoproteomic research

Supplementary Table 1

Reporting of extraction blanks, injection blanks, evidence of protein degradation and MS data reporting in MS/MS-based ancient protein analysis publications

Supplementary Table 2

Demonstration of misleading species assignments in Mascot outputs

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hendy, J., Welker, F., Demarchi, B. et al. A guide to ancient protein studies. Nat Ecol Evol 2, 791–799 (2018). https://doi.org/10.1038/s41559-018-0510-x

Download citation

Further reading