Abstract

Palaeoproteomics is an emerging neologism used to describe the application of mass spectrometry-based approaches to the study of ancient proteomes. As with palaeogenomics (the study of ancient DNA), it intersects evolutionary biology, archaeology and anthropology, with applications ranging from the phylogenetic reconstruction of extinct species to the investigation of past human diets and ancient diseases. However, there is no explicit consensus at present regarding standards for data reporting, data validation measures or the use of suitable contamination controls in ancient protein studies. Additionally, in contrast to the ancient DNA community, no consolidated guidelines have been proposed by which researchers, reviewers and editors can evaluate palaeoproteomics data, in part due to the novelty of the field. Here we present a series of precautions and standards for ancient protein research that can be implemented at each stage of analysis, from sample selection to data interpretation. These guidelines are not intended to impose a narrow or rigid list of authentication criteria, but rather to support good practices in the field and to ensure the generation of robust, reproducible results. As the field grows and methodologies change, so too will best practices. It is therefore essential that researchers continue to provide necessary details on how data were generated and authenticated so that the results can be independently and effectively evaluated. We hope that these proposed standards of practice will help to provide a firm foundation for the establishment of palaeoproteomics as a viable and powerful tool for archaeologists, anthropologists and evolutionary biologists.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 04 June 2018

    In the version of this Perspective originally published, in the third paragraph of the section ‘Selection and sampling’, the sentence beginning ‘Pyrolysis–gas chromatography’ should have also referred to high-performance liquid chromatography; the sentence has now been amended to read ‘Pyrolysis–gas chromatography/mass spectrometry (py–GC/MS) and high-performance liquid chromatography (HPLC) can be used to detect the presence of amino acids62 in any putative proteinaceous sample.’

References

  1. 1.

    Cappellini, E. et al. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J. Proteome Res. 11, 917–926 (2012).

  2. 2.

    Cappellini, E. et al. Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zool. J. Linn. Soc. 170, 222–232 (2014).

  3. 3.

    Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014).

  4. 4.

    Welker, F. et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522, 81–84 (2015).

  5. 5.

    Rybczynski, N. et al. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution. Nat. Commun. 4, 1550 (2013).

  6. 6.

    Cleland, T. P., Schroeter, E. R., Feranec, R. S. & Vashishth, D. Peptide sequences from the first Castoroides ohioensis skull and the utility of old museum collections for palaeoproteomics. Proc. Biol. Sci. 283, 20160593 (2016).

  7. 7.

    Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad. Sci. USA 113, 11162–11167 (2016).

  8. 8.

    Demarchi, B. et al. Protein sequences bound to mineral surfaces persist into deep time. Elife 5, e17092 (2016).

  9. 9.

    Hill, R. C. et al. Preserved proteins from extinct Bison latifrons identified by tandem mass spectrometry; hydroxylysine glycosides are a common feature of ancient collagen. Mol. Cell. Proteom. 14, 1946–1958 (2015).

  10. 10.

    Cleland, T. P., Schroeter, E. R. & Schweitzer, M. H. Biologically and diagenetically derived peptide modifications in moa collagens. Proc. R. Soc. B 282, 20150015 (2015).

  11. 11.

    Mikšík, I., Sedláková, P., Pataridis, S., Bortolotti, F. & Gottardo, R. Proteins and their modifications in a medieval mummy. Protein Sci. 25, 2037–2044 (2016).

  12. 12.

    Warinner, C. et al. Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 4, 7104 (2014).

  13. 13.

    Corthals, A. et al. Detecting the immune system response of a 500 year-old Inca mummy. PLoS ONE 7, e41244 (2012).

  14. 14.

    Maixner, F. et al. Paleoproteomic study of the Iceman’s brain tissue. Cell. Mol. Life Sci. 70, 3709–3722 (2013).

  15. 15.

    Kendall, R., Hendy, J., Collins, M. J., Millard, A. R. & Gowland, R. L. Poor preservation of antibodies in archaeological human bone and dentine. STAR 2, 15–24 (2016).

  16. 16.

    Hendy, J. et al. The challenge of identifying tuberculosis proteins in archaeological tissues. J. Archaeol. Sci. 66, 146–153 (2016).

  17. 17.

    Buckley, M., Collins, M. J., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3843–3854 (2009).

  18. 18.

    Holstein, I. C. C. et al. Searching for Scandinavians in pre-Viking Scotland: molecular fingerprinting of early medieval combs. J. Archaeol. Sci. 41, 1–6 (2014).

  19. 19.

    Stewart, N. A. et al. The identification of peptides by nanoLC-MS/MS from human surface tooth enamel following a simple acid etch extraction. RSC Adv. 6, 61673–61679 (2016).

  20. 20.

    Stewart, J. R. M., Allen, R. B., Jones, A. K. G., Penkman, K. E. H. & Collins, M. J. ZooMS: making eggshell visible in the archaeological record. J. Archaeol. Sci. 40, 1797–1804 (2013).

  21. 21.

    Warinner, C., Speller, C. & Collins, M. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos. Trans. R. Soc. B 370, 20130376 (2015).

  22. 22.

    Cappellini, E. et al. A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97, 205–217 (2010).

  23. 23.

    Shevchenko, A. et al. Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. J. Proteom. 105, 363–371 (2014).

  24. 24.

    Yang, Y. et al. Proteomics evidence for kefir dairy in early Bronze Age China. J. Archaeol. Sci. 45, 178–186 (2014).

  25. 25.

    Xie, M. et al. Identification of a dairy product in the grass woven basket from Gumugou Cemetery (3800 BP, northwestern China). Quat. Int. 426, 158–165 (2016).

  26. 26.

    Craig, O. E. et al. Detecting milk proteins in ancient pots. Nature 408, 312 (2000).

  27. 27.

    Solazzo, C., Fitzhugh, W. W., Rolando, C. & Tokarski, C. Identification of protein remains in archaeological potsherds by proteomics. Anal. Chem. 80, 4590–4597 (2008).

  28. 28.

    Buckley, M., Melton, N. D. & Montgomery, J. Proteomics analysis of ancient food vessel stitching reveals > 4000-year-old milk protein. Rapid Commun. Mass Spectrom. 27, 531–538 (2013).

  29. 29.

    Dallongeville, S. et al. Proteomics applied to the authentication of fish glue: application to a 17th century artwork sample. Analyst 138, 5357–5364 (2013).

  30. 30.

    Dallongeville, S. et al. Identification of animal glue species in artworks using proteomics: application to a 18th century gilt sample. Anal. Chem. 83, 9431–9437 (2011).

  31. 31.

    Solazzo, C. et al. Identification of the earliest collagen- and plant-based coatings from Neolithic artefacts (Nahal Hemar cave, Israel). Sci. Rep. 6, 31053 (2016).

  32. 32.

    Hynek, R., Kuckova, S. & Hradilova, J. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings. Rapid Commun. Mass Spectrom. 18, 1896–1900 (2004).

  33. 33.

    Tokarski, C., Martin, E., Rolando, C. & Cren-Olivé, C. Identification of proteins in renaissance paintings by proteomics. Anal. Chem. 78, 1494–1502 (2006).

  34. 34.

    Tripković, T. et al. Electrospray ionization linear trap quadrupole Orbitrap in analysis of old tempera paintings: application to nineteenth-century Orthodox icons. Eur. J. Mass Spectrom. 21, 679–692 (2015).

  35. 35.

    Brandt, L. Ø. et al. Species identification of archaeological skin objects from Danish bogs: comparison between mass spectrometry-based peptide sequencing and microscopy-based methods. PLoS ONE 9, e106875 (2014).

  36. 36.

    Gong, Y., Li, L., Gong, D., Yin, H. & Zhang, J. Biomolecular evidence of silk from 8,500 years ago. PLoS ONE 11, e0168042 (2016).

  37. 37.

    Fiddyment, S. et al. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting. Proc. Natl Acad. Sci. USA 112, 15066–15071 (2015).

  38. 38.

    Kuckova, S., Hynek, R. & Kodicek, M. Application of peptide mass mapping on proteins in historical mortars. J. Cult. Herit. 10, 244–247 (2009).

  39. 39.

    Krizkova, M. C., Kuckova, S. H., Santrucek, J. & Hynek, R. Peptide mass mapping as an effective tool for historical mortar analysis. Constr. Build. Mater. 50, 219–225 (2014).

  40. 40.

    Rao, H., Li, B., Yang, Y., Ma, Q. & Wang, C. Proteomic identification of organic additives in the mortars of ancient Chinese wooden buildings. Anal. Methods 7, 143–149 (2014).

  41. 41.

    Oonk, S., Cappellini, E. & Collins, M. J. Soil proteomics: an assessment of its potential for archaeological site interpretation. Org. Geochem. 50, 57–67 (2012).

  42. 42.

    Abelson, P. H. Amino acids in fossils. Science 119, 576 (1954).

  43. 43.

    Hare, E. & Abelson, P. H. Racemization of amino acids in fossil shells. Carnegie Inst. Wash. Yearbook 66, 526–528 (1968).

  44. 44.

    Schroeder, R. A. & Bada, J. L. A review of the geochemical applications of the amino acid racemization reaction. Earth Sci. Rev. 12, 347–391 (1976).

  45. 45.

    Hoering, T. C. in Biogeochemistry of Amino Acids (eds Hare, P. E., Hoering, T. C. & King, K.) 193–201 (Wiley, New York, 1980).

  46. 46.

    Goodfriend, G. A Perspectives in Amino Acid and Protein Geochemistry. (Oxford Univ. Press: Oxford, 2000).

  47. 47.

    Miller, M. F.II. & Wyckoff, R. W. Proteins in dinosaur bones. Proc. Natl Acad. Sci. USA176 60, 176–178 (1968).

  48. 48.

    Tower, K. M. in Biogeochemistry of Amino Acids (eds Hare, P. E., Hoering, T. C. & King, K. Jr) 65–74 (Wiley, New York, 1980).

  49. 49.

    Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

  50. 50.

    Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

  51. 51.

    Buckley, M., Warwood, S., van DongenB., Kitchener, A. C. & Manning, P. L. A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination. Proc. Biol. Sci. 284, 20170544 (2017).

  52. 52.

    Instructions to Authors Regarding Required Manuscript Content and Publication Guidelines for Molecular and Cellular Proteomics (American Society for Biochemistry and Molecular Biology, 2017); http://www.mcponline.org/site/misc/ms_guidelines.xhtml

  53. 53.

    Gilbert, M. T. P., Bandelt, H.-J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. 20, 541–544 (2005).

  54. 54.

    van Doorn, N. L., Hollund, H. & Collins, M. J. A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction. Archaeol. Anthropol. Sci. 3, 281–289 (2011).

  55. 55.

    Manfredi, M. et al. Method for noninvasive analysis of proteins and small molecules from ancient objects. Anal. Chem. 89, 3310–3317 (2017).

  56. 56.

    Teasdale, M. D. et al. The York Gospels: a 1000-year biological palimpsest. R. Soc. Open Sci 4, 170988 (2017).

  57. 57.

    Tokarski, C., Martin, E., Rolando, C. & Cren-Olivé, C. Identification of proteins in renaissance paintings by proteomics. Anal. Chem. 78, 1494–1502 (2006).

  58. 58.

    Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).

  59. 59.

    Collins, M. J. et al. The survival of organic matter in bone: a review. Archaeometry 44, 383–394 (2002).

  60. 60.

    Demarchi, B. et al. Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system. Quat. Geochronol. 16, 144–157 (2013).

  61. 61.

    Mackie, M. et al. Preservation of the metaproteome: variability of protein preservation in ancient dental calculus. STAR 3, 74–86 (2017).

  62. 62.

    Stankiewicz, A. B. et al. Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis/gas chromatography and pyrolysis/gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1747–1757 (1996).

  63. 63.

    Saitta, E. T. et al. Low fossilization potential of keratin protein revealed by experimental taphonomy. Palaeontology 60, 547–556 (2017).

  64. 64.

    Keck, S. & Peters, T. Identification of protein-containing paint media by quantitative amino acid analysis. Stud. Conserv. 14, 75–82 (1969).

  65. 65.

    Wyckoff, R. W., Wagner, E., Matter, P. III & Doberenz, A. R. Collagen in fossil bone. Proc. Natl Acad. Sci. USA 50, 215–218 (1963).

  66. 66.

    Brock, F., Geoghegan, V., Thomas, B., Jurkschat, K. & Higham, T. F. G. Analysis of bone ‘collagen’ extraction products for radiocarbon dating. Radiocarbon 55, 445–463 (2013).

  67. 67.

    van Doorn, N. L., Wilson, J., Hollund, H., Soressi, M. & Collins, M. J. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration. Rapid Commun. Mass Spectrom. 26, 2319–2327 (2012).

  68. 68.

    Simpson, J. P. et al. The effects of demineralisation and sampling point variability on the measurement of glutamine deamidation in type I collagen extracted from bone. J. Archaeol. Sci. 69, 29–38 (2016).

  69. 69.

    Schellmann, N. C. Animal glues: a review of their key properties relevant to conservation. Stud. Conserv 52, 55–66 (2007).

  70. 70.

    Hodge, K., Have, S. T., Hutton, L. & Lamond, A. I. Cleaning up the masses: exclusion lists to reduce contamination with HPLC-MS/MS. J. Proteom. 88, 92–103 (2013).

  71. 71.

    Wiktorowicz, C. J., Arnold, B., Wiktorowicz, J. E., Murray, M. L. & Kurosky, A. Hemorrhagic fever virus, human blood, and tissues in Iron Age mortuary vessels. J. Archaeol. Sci. 78, 29–39 (2017).

  72. 72.

    Bergeron, É. et al. Recovery of recombinant Crimean Congo hemorrhagic fever virus reveals a function for non-structural glycoproteins cleavage by furin. PLoS Pathog 11, e1004879 (2015).

  73. 73.

    Welker, F. et al. Variations in glutamine deamidation for a Ch telperronian bone assemblage as measured by peptide mass fingerprinting of collagen. STAR 3, 15–27 (2017).

  74. 74.

    Sawafuji, R. et al. Proteomic profiling of archaeological human bone. R. Soc. Open Sci. 4, 161004 (2017).

  75. 75.

    Sykes, G. A., Collins, M. J. & Walton, D. I. The significance of a geochemically isolated intracrystalline organic fraction within biominerals. Org. Geochem. 23, 1059–1065 (1995).

  76. 76.

    Penkman, K. E. H., Kaufman, D. S., Maddy, D. & Collins, M. J. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quat. Geochronol. 3, 2–25 (2008).

  77. 77.

    Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 5, 11184 (2015).

  78. 78.

    Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

  79. 79.

    Ginolhac, A. et al. Improving the performance of true single molecule sequencing for ancient DNA. BMC Genom. 13, 177 (2012).

  80. 80.

    Demarchi, B. & Collins, M. in Encyclopedia of Scientific Dating Methods (eds Rink, J. W. & Thompson, J.) 1–22 (Springer Netherlands, Dordrecht, 2014).

  81. 81.

    Jiang, X. et al. Method development of efficient protein extraction in bone tissue for proteome analysis. J. Proteome Res. 6, 2287–2294 (2007).

  82. 82.

    Wadsworth, C. & Buckley, M. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun. Mass Spectrom. 28, 605–615 (2014).

  83. 83.

    Wadsworth, C. & Buckley, M. Characterization of proteomes extracted through collagen-based stable isotope and radiocarbon dating methods. J. Proteome Res. 17, 429–439 (2018).

  84. 84.

    Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

  85. 85.

    Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

  86. 86.

    Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014).

  87. 87.

    Fischer, R. & Kessler, B. M. Gel-aided sample preparation (GASP)-A simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells. Proteomics 15, 1224–1229 (2014).

  88. 88.

    Colonese, A. C. et al. New criteria for the molecular identification of cereal grains associated with archaeological artefacts. Sci. Rep. 7, 6633 (2017).

  89. 89.

    Procopio, N. & Buckley, M. Minimizing laboratory-induced decay in bone proteomics. J. Proteome Res. 16, 447–458 (2017).

  90. 90.

    Schroeter, E. R., DeHart, C. J., Schweitzer, M. H., Thomas, P. M. & Kelleher, N. L. Bone protein ‘extractomics’: comparing the efficiency of bone protein extractions of Gallus gallus in tandem mass spectrometry, with an eye towards paleoproteomics. PeerJ 4, e2603 (2016).

  91. 91.

    Taylor, C. F. et al. Guidelines for reporting the use of mass spectrometry in proteomics. Nat. Biotechnol. 26, 860–861 (2008).

  92. 92.

    Taylor, G. K. & Goodlett, D. R. Rules governing protein identification by mass spectrometry. Rapid Commun. Mass Spectrom. 19, 3420 (2005).

  93. 93.

    Picotti, P., Aebersold, R. & Domon, B. The implications of proteolytic background for shotgun proteomics. Mol. Cell. Proteom. 6, 1589–1598 (2007).

  94. 94.

    Burkhart, J. M., Schumbrutzki, C., Wortelkamp, S., Sickmann, A. & Zahedi, R. P. Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J. Proteom. 75, 1454–1462 (2012).

  95. 95.

    Kim, J.-S., Monroe, M. E., Camp, D. G. II, Smith, R. D. & Qian, W.-J. In-source fragmentation and the sources of partially tryptic peptides in shotgun proteomics. J. Proteome Res. 12, 910–916 (2013).

  96. 96.

    cRAP Protein Sequences (The Global Proteome Machine Organization, accessed 1 June 2017); http://www.thegpm.org/crap

  97. 97.

    Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736 (2013).

  98. 98.

    Penkman, K. & Kaufman, D. Amino acid geochronology: recent perspectives. Quat. Geochronol. 16, 1–2 (2013).

  99. 99.

    Welker, F. et al. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae. PeerJ 5, e3033 (2017).

  100. 100.

    Breci, L. A., Tabb, D. L., Yates, J. R. III & Wysocki, V. H. Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 75, 1963–1971 (2003).

  101. 101.

    Schroeter, E. R. et al. Expansion for the Brachylophosaurus canadensis collagen I sequence and additional evidence of the preservation of cretaceous protein. J. Proteome Res. 16, 920–932 (2017).

  102. 102.

    Recommended Data Repositories (Scientific Data, accessed 30 May 2017); https://www.nature.com/sdata/policies/repositories

  103. 103.

    Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).

  104. 104.

    Anagnostou, P. et al. When data sharing gets close to 100%: what human paleogenetics can teach the open science movement. PLoS ONE 10, e0121409 (2015).

  105. 105.

    Welker, F. The Palaeoproteomic Identification of Pleistocene Hominin Skeletal Remains: Towards a Biological Understanding of the Middle to Upper Palaeolithic Transition. PhD thesis, Max Planck Institute for Evolutionary Anthropology (2017).

Download references

Acknowledgements

We thank E. Cappellini for valuable comments on a previous version of the manuscript. We are grateful to K. Penkman, J. Thomas-Oates, J. Wilson and R. Fischer, as well as C. Trachsel and J. Grossmann (Functional Genomics Center Zürich) for support and helpful discussions. This research was supported by the Max Planck Society (J.H., F.W. and C.W.) and its Donation Award (to J.H. and C.W.), the US National Science Foundation BCS-1516633, BCS-1523264, and BCS-1643318 (to C.W.), the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreement numbers STG 678901-FOODTRANSFORMS and STG-677576-HARVEST, the ‘Rita Levi-Montalcini Young Researchers Programme’ (to B.D.), the Wellcome Trust (grant no 108375/Z/15/Z), the Leverhulme Trust (Philip Leverhulme Prize) (to C.S.), the VILLUM FONDEN (grant no 17649), a Danish National Research Foundation Niels Bohr Professorship and ERC Investigator Grant 295729-CodeX (to M.J.C) and the US National Institutes of Health R01GM089886 (to C.W.).

Author information

Author notes

  1. These authors contributed equally: Jessica Hendy and Frido Welker.

Affiliations

  1. Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany

    • Jessica Hendy
  2. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

    • Frido Welker
  3. Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

    • Frido Welker
    •  & Matthew J. Collins
  4. Department of Life Science and Systems Biology, University of Turin, Turin, Italy

    • Beatrice Demarchi
  5. BioArCh, Department of Archaeology, University of York, York, UK

    • Beatrice Demarchi
    • , Camilla Speller
    •  & Matthew J. Collins
  6. Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany

    • Christina Warinner
  7. Department of Anthropology, University of Oklahoma, Norman, OK, USA

    • Christina Warinner
  8. Institute for Evolutionary Medicine, University of Zürich, Zürich, Switzerland

    • Christina Warinner

Authors

  1. Search for Jessica Hendy in:

  2. Search for Frido Welker in:

  3. Search for Beatrice Demarchi in:

  4. Search for Camilla Speller in:

  5. Search for Christina Warinner in:

  6. Search for Matthew J. Collins in:

Contributions

J.H. and F.W. conceived the manuscript. All authors wrote and contributed to the main text.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Jessica Hendy or Frido Welker.

Supplementary information

  1. Supplementary Information

    Guide to Supplementary Material

  2. Supplementary Data 1

    FASTA formatted file containing proteins (in)frequently identified as likely contaminants in standard palaeoproteomic research

  3. Supplementary Table 1

    Reporting of extraction blanks, injection blanks, evidence of protein degradation and MS data reporting in MS/MS-based ancient protein analysis publications

  4. Supplementary Table 2

    Demonstration of misleading species assignments in Mascot outputs

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0510-x