Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Language continuity despite population replacement in Remote Oceania

Abstract

Recent genomic analyses show that the earliest peoples reaching Remote Oceania—associated with Austronesian-speaking Lapita culture—were almost completely East Asian, without detectable Papuan ancestry. However, Papuan-related genetic ancestry is found across present-day Pacific populations, indicating that peoples from Near Oceania have played a significant, but largely unknown, ancestral role. Here, new genome-wide data from 19 ancient South Pacific individuals provide direct evidence of a so-far undescribed Papuan expansion into Remote Oceania starting ~2,500 yr bp, far earlier than previously estimated and supporting a model from historical linguistics. New genome-wide data from 27 contemporary ni-Vanuatu demonstrate a subsequent and almost complete replacement of Lapita-Austronesian by Near Oceanian ancestry. Despite this massive demographic change, incoming Papuan languages did not replace Austronesian languages. Population replacement with language continuity is extremely rare—if not unprecedented—in human history. Our analyses show that rather than one large-scale event, the process was incremental and complex, with repeated migrations and sex-biased admixture with peoples from the Bismarck Archipelago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial and genetic distribution of ancient and present-day individuals.
Fig. 2: Admixture proportions of Papuan- versus Lapita-related ancestry in ancient and present-day populations using 1,240 K genome-wide data.
Fig. 3: Demographic history of ancient Vanuatu individuals.

Similar content being viewed by others

References

  1. Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Pawley, A. & Green, R. Dating the dispersal of the Oceanic languages. Ocean. Linguist. 12, 1–67 (1973).

    Article  Google Scholar 

  3. Kirch, P. V. On the Road of the Winds: An Archaeological History of the Pacific Islands Before European Contact (Univ. California Press, Berkeley, 2017).

  4. Blust, R. A. The prehistory of the Austronesian-speaking peoples: a view from language. J. World Prehist. 9, 453–510 (1995).

    Article  Google Scholar 

  5. Gray, R. D., Drummond, A. J. & Greenhill, S. J. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323, 479–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Blust, R. A. The Austronesian Languages (Australian National Univ., Canberra, 2009).

  7. Summerhayes, G. R. et al. Tamuarawai (EQS): an early Lapita site on Emirau, New Ireland, PNG. J. Pac. Archaeol. 1, 62–75 (2010).

    Google Scholar 

  8. Sheppard, P. J. Lapita colonization across the Near/Remote Oceania boundary. Curr. Anthropol. 52, 799–840 (2011).

    Article  Google Scholar 

  9. Pugach, I. et al. The gateway from Near into Remote Oceania: new insights from genome-wide data. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msx333 (2018).

  10. Petchey, F. J., Spriggs, M., Bedford, S., Valentin, F. & Buckley, H. Radiocarbon dating of burials from the Teouma Lapita cemetery, Efate, Vanuatu. J. Archaeol. Sci. 50, 227–242 (2014).

    Article  CAS  Google Scholar 

  11. Sand, C. Lapita Calédonien. Archéologie d’un Premier Peuplement Insulaire Océanien (Société des Océanistes, Paris, 2010).

  12. Burley, D., Weisler, M. I. & Zhao, J.-X. High precision U/Th dating of first Polynesian settlement. PLoS ONE 7, e48769 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wollstein, A. et al. Demographic history of Oceania inferred from genome-wide data. Curr. Biol. 20, 1983–1992 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Pawley, A., Attenborough, R., Golson, J. & Hide, R. Papuan Pasts: Cultural, Linguistic and Biological Histories of Papuan-Speaking Peoples (Australian National Univ., Canberra, 2005).

  15. Lynch, J., Ross, M. & Crowley, T. The Oceanic Languages (Curzon, Richmond, 2002).

  16. Kayser, M. et al. Genome-wide analysis indicates more Asian than Melanesian ancestry of Polynesians. Am. J. Hum. Genet. 82, 194–198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melton, T. et al. Polynesian genetic affinities with Southeast Asian populations as identified by mtDNA analysis. Am. J. Hum. Genet. 57, 403–414 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kayser, M. et al. Melanesian origin of Polynesian Y chromosomes. Curr. Biol. 10, 1237–1246 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hurles, M. E. et al. Y-chromosomal evidence for the origins of Oceanic-speaking peoples. Genetics 160, 289–303 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kayser, M. et al. Melanesian and Asian origins of Polynesians: mtDNA and Y chromosome gradients across the Pacific. Mol. Biol. Evol. 23, 2234–2244 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Skoglund, P. et al. Origins and genetic legacy of the first people in Remote Oceania. Nature 538, 510–513 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Valentin, F., Détroit, F., Spriggs, M. & Bedford, S. Early Lapita skeletons from Vanuatu show Polynesian craniofacial shape: implications for Remote Oceanic settlement and Lapita origins. Proc. Natl Acad. Sci. USA 113, 292–297 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bedford, S. & Spriggs, M. in The Oxford Handbook of Prehistoric Oceania (eds Cochrane, E. & Hunt, T.) Ch. 8 (Oxford Univ. Press, Oxford, 2014).

  24. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

  26. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Phil. Trans. R. Soc. B 370, 20130624 (2015).

  27. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Key, F. M., Posth, C., Krause, J., Herbig, A. & Bos, K. I. Mining metagenomic data sets for ancient DNA: recommended protocols for authentication. Trends Genet. 33, 508–520 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parks, T. et al. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat. Commun. 8, 14946 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Loh, P. R. et al. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193, 1233–1254 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mirabal, S. et al. Increased Y-chromosome resolution of haplogroup O suggests genetic ties between the Ami aborigines of Taiwan and the Polynesian Islands of Samoa and Tonga. Gene 492, 339–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Oliver, D. L. Ancient Tahitian Society: Ethnography (Univ. Press of Hawaii, Honolulu, 1974).

  40. Wilmshurst, J. M., Hunt, T. L., Lipo, C. P. & Anderson, A. J. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proc. Natl Acad. Sci. USA 108, 1815–1820 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Blust, R. Review of Lynch, Ross, and Crowley, “The Oceanic Languages”. Ocean. Linguist. 44, 544–548 (2005).

    Article  Google Scholar 

  42. Blust, R. Remote Melanesia: one history or two? An addendum to Donohue and Denham. Ocean. Linguist. 47, 445–459 (2008).

    Article  Google Scholar 

  43. Donohue, M. & Denham, T. The language of Lapita: Vanuatu and an early Papuan presence in the Pacific. Ocean. Linguist. 47, 365–376 (2008).

    Google Scholar 

  44. Lynch, J. Melanesian diversity and Polynesian homogeneity: the other side of the coin. Ocean. Linguist. 20, 95–129 (1981).

    Article  Google Scholar 

  45. Tryon, D. T. in Melanesia: Beyond Diversity (eds May, R. J. & Nelson, H.) 241–248 (Australian National Univ., Canberra, 1982).

  46. Speiser, F. Ethnology of Vanuatu. An Early Twentieth Century Study (Crawford House Press, Bathurst, 1996).

  47. Pawley, A. Explaining the aberrant Austronesian languages of Southeast Melanesia: 150 years of debate. J. Polyn. Soc. 115, 215–258 (2006).

    Google Scholar 

  48. Clark, R. Leo Tuai: a Comparative Lexical Study of North and Central Vanuatu Languages (Australian National Univ., Canberra, 2009).

  49. Lynch, J. The Linguistic History of Southern Vanuatu (Australian National Univ., Canberra, 2001).

  50. Bedford, S. Pieces of the Vanuatu Puzzle: Archaeology of the North, South and Centre Vol. 23 157–192 (Australian National Univ., Canberra, 2006).

  51. Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2, 1756–1762 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

  61. Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Moorjani, P. et al. A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proc. Natl Acad. Sci. USA 113, 5652–5657 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the communities in Malakula and Efate in Vanuatu who participated in this study, and particularly all sample donors. We are grateful to M. Stoneking, I. Pugach and C.-C. Wang for comments, and to G. Brandt, R. Bianco and technicians at the Max Planck Institute for the Science of Human History for laboratory support. This research was supported by the Max Planck Society. Archaeological investigations on Malakula, Vanuatu were funded by the Sasakawa Pacific Island Nations Fund, the Marsden Fund of the Royal Society of New Zealand (Fast-Start 9011/3602128; 04-U00–007), a National Geographic Scientific Research grant (7738–04) and an Australian Research Council Discovery Project grant (DP0880789). Investigations on Tanna, Vanuatu were supported by an Australian Research Council Discover Project grant (DP160103578). F.V. is funded by CNRS-UMR 7041, H.B. is funded by the Marsden Fund of the Royal Society of New Zealand (Standard Grant UOO0917) and a University of Otago Research Grant, and A.P. is funded by European Research Council Starting Grant ‘Waves’ (ERC758967).

Author information

Authors and Affiliations

Authors

Contributions

F.V., S.B., R.S., H.B., R.K., G.R.C., C.R., J.F., T.M., J.M., J.G. and L.K. contributed archaeological material. H.C., K.W.K. and A.P. contributed the 27 present-day Vanuatu samples. J.Z., F.P. and P.R. contributed isotopic data and radiocarbon date calibrations. M.W. and R.D.G. contributed linguistic interpretation. F.V., S.B., J.M., F.P. and P.R. contributed text in the Supplementary Information. K.J.R., K.A., S.J.O., A.V.S.H. and A.J.M. contributed geographical labels for the ref. 32 samples. C.P. and K.N. performed ancient DNA laboratory work. C.P., K.N., C.J. and A.P. performed population genetic analyses. C.P., K.N., H.C. and A.P. wrote the paper with input from F.V., S.B., H.B., M.W., F.P., P.R., C.J., R.D.G. and J.K. C.P. and A.P. created the figures. The study was conceived and coordinated by C.P., K.N., H.C., R.D.G., J.K. and A.P.

Corresponding authors

Correspondence to Cosimo Posth, Heidi Colleran, Johannes Krause or Adam Powell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables, text and references

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posth, C., Nägele, K., Colleran, H. et al. Language continuity despite population replacement in Remote Oceania. Nat Ecol Evol 2, 731–740 (2018). https://doi.org/10.1038/s41559-018-0498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0498-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing