Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils


Understanding the genealogical relationships among the arachnid orders is an onerous task, but fossils have aided in anchoring some branches of the arachnid tree of life. The discovery of Palaeozoic fossils with characters found in both extant spiders and other arachnids provided evidence for a series of extinctions of what was thought to be a grade, Uraraneida, that led to modern spiders. Here, we report two extraordinarily well-preserved Mesozoic members of Uraraneida with a segmented abdomen, multi-articulate spinnerets with well-defined spigots, modified male palps, spider-like chelicerae and a uropygid-like telson. The new fossils, belonging to the species Chimerarachne yingi, were analysed phylogenetically in a large data matrix of extant and extinct arachnids under a diverse regime of analytical conditions, most of which resulted in placing Uraraneida as the sister clade of Araneae (spiders). The phylogenetic placement of this arachnid fossil extends the presence of spinnerets and modified palps more basally in the arachnid tree than was previously thought. Ecologically, the new fossil extends the record of Uraraneida 170 million years towards the present, thus showing that uraraneids and spiders co-existed for a large fraction of their evolutionary history.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Light micrographs of C. yingi (NIGP167161).
Fig. 2: Micro computed tomography reconstructions of C. yingi (NIGP167161).
Fig. 3: Morphological reconstruction of male C. yingi.
Fig. 4: Phylogenetic results of the parsimony and Bayesian analyses of the morphological dataset.


  1. 1.

    Wheeler, W. C. et al. The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33, 574–616 (2017).

    Article  Google Scholar 

  2. 2.

    Dunlop, J. A. Geological history and phylogeny of Chelicerata. Arthropod Struct. Dev. 39, 124–142 (2010).

  3. 3.

    Garrison, N. L. et al. Spider phylogenomics: untangling the spider tree of life. PeerJ 4, e1719 (2016).

  4. 4.

    Shear, W. A., Palmer, J. M., Coddington, J. A. & Bonamo, P. M. A Devonian spinneret: early evidence of spiders and silk use. Science 246, 479–481 (1989).

    CAS  Article  Google Scholar 

  5. 5.

    Selden, P. A., Shear, W. A. & Bonamo, P. M. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology 34, 241–281 (1991).

    Google Scholar 

  6. 6.

    Selden, P. A., Shear, W. A. & Sutton, M. D. Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proc. Natl. Acad. Sci. USA 105, 20781–20785 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Garwood, R. J. et al. Almost a spider: a 305-million-year-old fossil arachnid and spider origins. Proc. R. Soc. B Biol. Sci. 283, 20160125 (2016).

    Article  Google Scholar 

  8. 8.

    Eskov, K. Y. & Selden, P. A. First record of spiders from the Permian period (Araneae: Mesothelae). Bull. Br. Arachnol. Soc. 13, 111–116 (2005).

    Google Scholar 

  9. 9.

    Selden, P. A. A redescription of Juraraneus rasnitsyni Eskov, 1984 (Araneae: Juraraneidae), from the Jurassic of Russia. Bull. Br. Arachnol. Soc. 15, 315–321 (2012).

    Article  Google Scholar 

  10. 10.

    Shear, W. A., Selden, P. A., Rolfe, W. D. I., Bonamo, P. M. & Grierson, J. D. New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida, Trigonotarbida). Am. Mus. Novit. 2901, 1–74 (1987).

    Google Scholar 

  11. 11.

    Giribet, G., Edgecombe, G. D., Wheeler, W. C. & Babbitt, C. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18, 5–70 (2002).

    Google Scholar 

  12. 12.

    Garwood, R. J., Dunlop, J. A., Giribet, G. & Sutton, M. D. Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones. Nat. Commun. 2, 444 (2011).

    Article  Google Scholar 

  13. 13.

    Garwood, R. J., Dunlop, J. A., Knecht, B. J. & Hegna, T. A. The phylogeny of fossil whip spiders. BMC Evol. Biol. 17, 105 (2017).

    Article  Google Scholar 

  14. 14.

    Wang, B. et al. Cretaceous arachnid Chimerarachne yingi gen. et sp. nov. illuminates spider origins. Nat. Ecol. Evol. (2018).

  15. 15.

    Ross, A., Mellish, C., York, P. & Crighton, B. in Biodiversity of Fossil in Amber from the Major World Deposits (ed. Penney, D.) 208–235 (Siri Scientific Press, Rochdale, 2010).

  16. 16.

    Shi, G. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).

    Article  Google Scholar 

  17. 17.

    Prendini, L. Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. Syst. Biol. 50, 290–300 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    Shultz, J. W. A phylogenetic analysis of the arachnid orders based on morphological characters. Zool. J. Linn. Soc. 150, 221–265 (2007).

    Article  Google Scholar 

  19. 19.

    Garwood, R. J. & Dunlop, J. Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders. PeerJ 2, e641 (2014).

    Article  Google Scholar 

  20. 20.

    Xu, X. et al. A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae). ZooKeys 488, 121–151 (2015).

    Article  Google Scholar 

  21. 21.

    Giribet, G. & Dunlop, J. A. First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber. Proc. R. Soc. B Biol. Sci. 272, 1007–1013 2005).

    Article  Google Scholar 

  22. 22.

    Poinar, G. in Advances in Arachnology and Developmental Biology. Papers Dedicated to Prof. Dr. Bozidar Curcic Vol. Monographs, 12 (eds Makarov, S. E. & Dimitrijevic, R. N.) 267–274 (Inst. Zool., Belgrade; BAS, Sofia; Fac. Life Sci., Vienna; SASA, Belgrade and UNESCO MAB Serbia, 2008).

  23. 23.

    Engel, M. S. et al. The first Mesozoic microwhip scorpion (Palpigradi): a new genus and species in mid-Cretaceous amber from Myanmar. Sci. Nat. 103, 19 (2016).

    Article  Google Scholar 

  24. 24.

    Dunlop, J. A., Bird, T. L., Brookhart, J. O. & Bechly, G. A camel spider from Cretaceous Burmese amber. Cretac. Res. 56, 265–273 (2015).

    Article  Google Scholar 

  25. 25.

    Henderickx, H. & Boone, M. The basal pseudoscorpion family Feaellidae Ellingsen, 1906 walks the earth for 98.000.000 years: a new fossil genus has been found in Cretaceous Burmese amber (Pseudoscorpiones: Feaellidae). Publicatie 27, 7–12 (2016).

  26. 26.

    Selden, P. A., Dunlop, J. A., Giribet, G., Zhang, W. & Ren, D. The oldest armoured harvestman (Arachnida: Opiliones: Laniatores), from Upper Cretaceous Myanmar amber. Cretaceous Res. 65, 206–212 (2016).

  27. 27.

    Cai, C. & Huang, D. A new genus of whip-scorpions in Upper Cretaceous Burmese amber: earliest fossil record of the extant subfamily Thelyphoninae (Arachnida: Thelyphonida: Thelyphonidae). Cretaceous Res. 69, 100–105 (2017).

  28. 28.

    Wunderlich, J. Description of the first fossil Ricinulei in amber from Burma (Myanmar), the first report of this arachnid order from the Mesozoic and from Asia, with notes on the related extinct order Trigonotarbida. Beitr. Zur. Araneol. 7, 233–244 (2012).

    Google Scholar 

  29. 29.

    Selden, P. A. & Ren, D. A review of Burmese amber arachnids. J. Arachnol. 45, 324–343 (2017).

    Article  Google Scholar 

  30. 30.

    Murienne, J., Benavides, L. R., Prendini, L., Hormiga, G. & Giribet, G. Forest refugia in Western and Central Africa as ‘museums’ of Mesozoic biodiversity. Biol. Lett. 9, 20120932 (2013).

    Article  Google Scholar 

  31. 31.

    Selden, P. A. First fossil mesothele spider, from the Carboniferous of France. Rev. Suisse Zool. 2, 585–596 (1996).

  32. 32.

    Wolfe, J. M., Daley, A. C., Legg, D. A. & Edgecombe, G. D. Fossil calibrations for the arthropod tree of life. Earth-Sci. Rev. 160, 43–110 (2016).

  33. 33.

    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Article  Google Scholar 

  34. 34.

    Goloboff, P. A. Estimating character weights during tree search. Cladistics 9, 83–91 (1993).

    Article  Google Scholar 

  35. 35.

    Goloboff, P. A. Extended implied weighting. Cladistics 30, 260–272 (2014).

    Article  Google Scholar 

  36. 36.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  Google Scholar 

  37. 37.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS  Article  Google Scholar 

Download references


Financial support was provided by the Strategic Priority Research Program (B) (XDB18000000) and the programme Macroevolutionary Processes and Palaeoenvironments of Major Historical Biota (XDPB05) of the Chinese Academy of Sciences, the National Natural Science Foundation of China (41688103 and 91514302) and US National Science Foundation grants 1457300 (to G.H.) and 1457539 (to G.G.) (Collaborative Research: Phylogeny and diversification of the orb weaving spiders (Araneae)). We are grateful to J. Sun for reconstruction and S. Wu for micro computed tomography assistance. Published by a grant from the Wetmore Colles fund.

Author information




D.H., G.G., G.H., C.C., Y.S., Z.Y. and F.X. participated in the morphological studies. D.H. coordinated the study. G.G. and G.H. conducted the phylogenetic analyses. G.G., D.H. and G.H. prepared the manuscript.

Corresponding authors

Correspondence to Diying Huang or Gonzalo Giribet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, description, characters and references.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Hormiga, G., Cai, C. et al. Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils. Nat Ecol Evol 2, 623–627 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing