Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Rapid evolution of highly variable competitive abilities in a key phytoplankton species

Abstract

Climate change challenges plankton communities, but evolutionary adaptation could mitigate the potential impacts. Here, we tested with the phytoplankton species Emiliania huxleyi whether adaptation to a stressor under laboratory conditions leads to equivalent fitness gains in a more natural environment. We found that fitness advantages that had evolved under laboratory conditions were masked by pleiotropic effects in natural plankton communities. Moreover, new genotypes with highly variable competitive abilities evolved on timescales significantly shorter than climate change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of E. huxleyi abundance.

Similar content being viewed by others

References

  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. G. Science 281, 237–240 (1998).

    Article  CAS  Google Scholar 

  2. Hays, G. C., Richardson, A. J. & Robinson, C. Trends Ecol. Evol. 20, 337–344 (2005).

    Article  Google Scholar 

  3. Collins, S., Rost, B. & Rynearson, T. A. Evol. Appl. 7, 140–155 (2014).

    Article  CAS  Google Scholar 

  4. Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Nat. Geosci. 5, 346–351 (2012).

    Article  CAS  Google Scholar 

  5. Paasche, E. Phycologia 40, 503–529 (2002).

    Article  Google Scholar 

  6. Riebesell, U. et al. Nature 407, 364–367 (2000).

    Article  CAS  Google Scholar 

  7. Schlüter, L., Lohbeck, K. T., Gröger, J. P., Riebesell, U. & Reusch, T. B. H. Sci. Adv. 2, (2016).

  8. Bach, L. T. et al. PLoS ONE 11, e0159068 (2016).

    Article  Google Scholar 

  9. Riebesell, U. et al. Nat. Geosci. 10, 19–23 (2017).

    Article  CAS  Google Scholar 

  10. Monteiro, F. M. et al. Sci. Adv. 2, e1501822 (2016).

  11. Lang, G. I. et al. Nature 500, 571–574 (2013).

    Article  CAS  Google Scholar 

  12. Lohbeck, K. T., Riebesell, U., Collins, S. & Reusch, T. B. H. Evolution 67, 1892–1900 (2013).

    Article  Google Scholar 

  13. Elena, S. F. & Lenski, R. E. Nat. Rev. Genet. 4, 457–469 (2003).

    Article  CAS  Google Scholar 

  14. Lawrence, D. et al. PLoS Biol. 10, e1001330 (2012).

    Article  CAS  Google Scholar 

  15. Collins, S. Proc. R. Soc. B Biol. Sci. 278, 247–255 (2011).

    Article  Google Scholar 

  16. Scheinin, M., Riebesell, U., Rynearson, T. A., Lohbeck, K. T. & Collins, S. J. R. Soc. Interface 12, 1–5 (2015).

    Article  Google Scholar 

  17. Schaum, C.-E. et al. Nat. Ecol. Evol. 1, 0094 (2017).

  18. Lenski, R. E. ISME J. 11, 2181–2194 (2017).

    Article  CAS  Google Scholar 

  19. Tatters, A. O. et al. Evolution 67, 1879–1891 (2013).

    Article  Google Scholar 

  20. Rynearson, T. A. & Armbrust, E. V. Mol. Ecol. 14, 1631–1640 (2005).

    Article  Google Scholar 

  21. Alpermann, T. J., Tillmann, U., Beszteri, B., Cembella, A. D. & John, U. J. Phycol. 46, 18–32 (2010).

    Article  CAS  Google Scholar 

  22. Walsh, M. R. Trends Ecol. Evol. 28, 23–29 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Schlüter for providing the ten E. huxleyi lineages, J. Meyer for technical assistance in the laboratory and the KOSMOS Kristineberg team for maintenance of the mesocosm infrastructure. We are also grateful for the warm hospitality of the staff at the Sven Lovén Centre for Marine Infrastructure at the University of Gothenburg. This research was funded by the German Federal Ministry of Science and Education in the framework of the Biological Impacts of Ocean Acidification II project (FKZ 03F06550).

Author information

Authors and Affiliations

Authors

Contributions

L.T.B. conceived the study, conducted the experiment, performed the measurements and data evaluation, and drafted the manuscript. T.B.H.R performed the statistical analyses. All authors designed the experiment and contributed to the manuscript revision.

Corresponding author

Correspondence to Lennart T. Bach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary tables 1–3; supplementary figures 1–6.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bach, L.T., Lohbeck, K.T., Reusch, T.B.H. et al. Rapid evolution of highly variable competitive abilities in a key phytoplankton species. Nat Ecol Evol 2, 611–613 (2018). https://doi.org/10.1038/s41559-018-0474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0474-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing