The factors driving evolved herbicide resistance at a national scale


Repeated use of xenobiotic chemicals has selected for the rapid evolution of resistance, threatening health and food security at a global scale. Strategies for preventing the evolution of resistance include cycling and mixtures of chemicals and diversification of management. We currently lack large-scale studies that evaluate the efficacy of these different strategies for minimizing the evolution of resistance. Here we use a national-scale data set of occurrence of the weed Alopecurus myosuroides (black-grass) in the United Kingdom to address this. Weed densities are correlated with assays of evolved resistance, supporting the hypothesis that resistance is driving weed abundance at a national scale. Resistance was correlated with the frequency of historical herbicide applications, suggesting that evolution of resistance is primarily driven by intensity of exposure to herbicides, but was unrelated directly to other cultural techniques. We find that populations resistant to one herbicide are likely to show resistance to multiple herbicide classes. Finally, we show that the economic costs of evolved resistance are considerable: loss of control through resistance can double the economic costs of weeds. This research highlights the importance of managing threats to food production and healthcare systems using an evolutionarily informed approach in a proactive not reactive manner.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Abundance and distribution of A. myosuoroides, along with long-term trends in pesticide usage in the UK.
Fig. 2: Percentage of fields tested for resistance to three herbicides, where resistance has been confirmed and is highly likely to reduce herbicide effectiveness.
Fig. 3: Density and herbicide resistance in A. myosuroides.
Fig. 4: Black-grass density and resistance status of each field that was in winter wheat in both 2015 and 2016.
Fig. 5: Farm management impacts of black-grass.


  1. 1.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Palumbi, S. R. Humans as the world’s greatest evolutionary force. Science 293, 1786–1790 (2001).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Laxminarayan, R. et al. Access to effective antimicrobials: a worldwide challenge. Lancet 387, 168–175 (2016).

    Article  PubMed  Google Scholar 

  4. 4.

    Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).

    Article  Google Scholar 

  5. 5.

    Duke, S. O. Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci. 68, 505–512 (2012).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Gluckman, P. D., Hanson, M. A. & Mitchell, M. D. Developmental origins of health and disease: reducing the burden of chronic disease in the next generation. Genome Med. 2, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Powles, S. B. & Yu, Q. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61, 317–347 (2010).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Roush, R. & Tabashnik, B. E. (eds) Pesticide Resistance in Arthropods (Springer, Boston, 2012).

  9. 9.

    REX Consortium Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 28, 110–118 (2013).

  10. 10.

    Antiretroviral Therapy for HIV Infection in Adults and Adolescents: Recommendations for a Public Health Approach 2010 Revision (World Health Organization, 2010).

  11. 11.

    Treatment of Tuberculosis: Guidelines (World Health Organization, 2010).

  12. 12.

    Guidelines for the Treatment of Malaria 3rd edn (World Health Organization, 2015).

  13. 13.

    Beckie, H. J. & Reboud, X. Selecting for weed resistance: herbicide rotation and mixture. Weed Tech. 23, 363–370 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Diggle, A. J., Neve, P. B. & Smith, F. P. Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res. 43, 371–382 (2003).

    Article  Google Scholar 

  15. 15.

    Samoucha, Y. & Ulrich, G. Use of two- and three-way mixtures to prevent buildup of resistance to phenylamide fungicides in Phytophthora and Plasmopara. Phytopathology 77, 1405–1409 (1987).

    CAS  Article  Google Scholar 

  16. 16.

    Lagator, M., Vogwill, T., Mead, A., Colegrave, N. & Neve, P. Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii. New Phytol. 198, 938–945 (2013).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Lagator, M., Vogwill, T., Colegrave, N. & Neve, P. Herbicide cycling has diverse effects on evolution of resistance in Chlamydomonas reinhardtii. Evol. Appl. 6, 197–206 (2013).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Norsworthy, J. K. et al. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. 60, 31–62 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Delye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Chikowo, R., Faloya, V., Petit, S. & Munier-Jolain, N. M. Integrated weed management systems allow reduced reliance on herbicides and long-term weed control. Agric. Ecosyst. Environ. 132, 237–242 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Powles, S. B. & Matthews, J. M. Multiple Herbicide Resistance in Annual Ryegrass ( Lolium rigidum ): A Driving Force for the Adoption of Integrated Weed Management (Springer, Dordrecht, 1992).

  22. 22.

    Heap, I. The International Survey of Herbicide Resistant Weeds (2017);

  23. 23.

    Höjgard, S. Antibiotic resistance – why is the problem so difficult to solve? Infect. Ecol. Epidemiol. 2, 18165 (2012).

    Article  Google Scholar 

  24. 24.

    Beckie, H. J. Herbicide-resistant weeds: management tactics and practices. Weed Tech. 20, 793–814 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    Powles, S., Preston, C., Bryan, I. & Jutsum, A. Herbicide resistance: impact and management. Adv. Agron. 58, 57–93 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    Moss, S. R. & Clarke, J. H. Guidelines for the prevention and control of herbicide-resistant black-grass (Alopecurus myosuroides Huds.). Crop Prot. 13, 230–234 (1994).

    Article  Google Scholar 

  27. 27.

    Comins, H. N. Tactics for resistance management using multiple pesticides. Agric. Ecosyst. Environ. 16, 129–148 (1986).

    Article  Google Scholar 

  28. 28.

    Neve, P. Challenges for herbicide resistance evolution and management: 50 years after Harper. Weed Res. 47, 365–369 (2007).

    Article  Google Scholar 

  29. 29.

    Herrmann, J., Hess, M., Strek, H., Richter, O. & Beffa, R. Linkage of the current ALS-resistance status with field history information of multiple fields infested with blackgrass. Jul.-Kuhn-Arch. 443, 273–279 (2016).

    Google Scholar 

  30. 30.

    Evans, J. A. et al. Managing the evolution of herbicide resistance. Pest Manag. Sci. 72, 74–80 (2016).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Moss, S. R., Perryman, S. A. M. & Tatnell, L. V. Managing herbicide-resistant blackgrass (Alopecurus myosuroides): theory and practice. Weed Technol. 21, 300–309 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    Lutman, P. J. W., Moss, S. R., Cook, S., Welham, S. J. & Kim, D.-S. A review of the effects of crop agronomy on the management of Alopecurus myosuroides. Weed Res. 53, 299–313 (2013).

    Article  Google Scholar 

  33. 33.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2005).

    Article  Google Scholar 

  35. 35.

    Cousens, R. Theory and reality of weed control thresholds. Plant Prot. Quart. 2, 13–20 (1987).

    Google Scholar 

  36. 36.

    Maxwell, B. D. Weed thresholds: the space component and considerations for herbicide resistance. Weed Tech. 6, 205–212 (1992).

    Google Scholar 

  37. 37.

    Foresman, C. & Glasgow, L. US grower perceptions and experiences with glyphosate-resistant weeds. Pest Manag. Sci. 64, 388–391 (2008).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Llewellyn, R. S., Lindner, R. K., Pannell, D. J. & Powles, S. B. Herbicide resistance and the adoption of integrated weed management by Western Australian grain growers. Agric. Econ. 36, 123–130 (2007).

    Article  Google Scholar 

  39. 39.

    Perez-Jones, A., Park, K.-W., Polge, N., Colquhoun, J. & Mallory-Smith, C. A. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta 226, 395–404 (2007).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Queenborough, S. A., Burnet, K. M., Sutherland, W. J., Watkinson, A. R. & Freckleton, R. P. From meso- to macroscale population dynamics: a new density-structured approach. Methods Ecol. Evol. 2, 289–302 (2011).

    Article  Google Scholar 

  41. 41.

    Avery, B. W. Soil Classification for England and Wales (Higher Categories) (Soil Survey Technical Monograph No. 14, Harpenden, 1980).

  42. 42.

    Clayden, B. and Hollis, J. M. Criteria for Differentiating Soil Series (Soil Survey Technical Monograph No. 17, Harpenden, 1984).

  43. 43.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2014).

    Google Scholar 

  44. 44.

    Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Halekoh, U. & Højsgaard, S. A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models – the R package pbkrtest. J. Stat. Soft. 59, 1–32 (2014).

    Article  Google Scholar 

  46. 46.

    Kalogirou, S. lctools: Local Correlation, Spatial Inequalities, Geographically Weighted Regression and Other Tools R package version 0.2-5 (2016);

  47. 47.

    Barton, K. MuMIN: Multi-Model Inference R package version 0.12.2 (2009);

  48. 48.

    Stratonovitch, P., Storkey, J. & Semenov, M. A. A process-based approach to modelling impacts of climate change on the damage niche of an agricultural weed. Glob. Change Biol. 18, 2071–2080 (2012).

    Article  Google Scholar 

  49. 49.

    Perring, F. & Walters, S. M. Atlas of the British Flora (Botanical Society of the British Isles, 1962).

  50. 50.

    Preston, C. D., Pearman, D. A. & Dines, T. D. New Atlas of the British and Irish Flora (Botanical Society of the Britain and Ireland, 2002).

Download references


The authors would like to thank all of the farmers who have kindly allowed us to survey their fields and provided field management data for the analyses. This work was funded by BBSRC (BB/L001489/1) and the Agriculture and Horticulture Development Board (Cereals and Oilseeds).

Author information




The project was conceptualized by H.L.H., R.P.F., P.N., D.Z.C. and K.N.; the survey was designed by R.P.F. and H.L.H., the resistance assays were designed by P.N. and D.C. Statistical analysis was undertaken by H.L.H., R.P.F., S.R.C. and D.C. Data were collected by H.L.H., D.C., L.C. and R.H. The inital manuscript was drafted by H.L.H. and R.P.F., with H.L.H., R.P.F., D.Z.C., S.R.C., D.C., P.N. and K.N. contributing to the writing. Funding was acquired by R.P.F., D.Z.C., P.N. and K.N.

Corresponding author

Correspondence to Robert P. Freckleton.

Ethics declarations

Competing interests

R.P.F., D.Z.C., L.C., H.L.H., S.R.C., R.H. and D.C. declare no competing financial interests; P.N. supervises a PhD student co-funded by Bayer (not part of this project).

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 1, Supplementary Tables 1–5, Supplementary Experimental Procedures

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hicks, H.L., Comont, D., Coutts, S.R. et al. The factors driving evolved herbicide resistance at a national scale. Nat Ecol Evol 2, 529–536 (2018).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing