Redefining ecosystem multifunctionality


Recent years have seen a surge of interest in ecosystem multifunctionality, a concept that has developed in the largely separate fields of biodiversity–ecosystem function and land management research. Here we discuss the merit of the multifunctionality concept, the advances it has delivered, the challenges it faces and solutions to these challenges. This involves the redefinition of multifunctionality as a property that exists at two levels: ecosystem function multifunctionality and ecosystem service multifunctionality. The framework presented provides a road map for the development of multifunctionality measures that are robust, quantifiable and relevant to both fundamental ecological science and ecosystem management.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: An example of the measurement of landscape-scale ES-multifunctionality.

Change history

  • 13 August 2018

    In the version of this Perspective originally published, in the figure in Box 3 the middle panel of the top row was incorrectly labelled ‘50% threshold-plus’; it should have read ‘50% threshold’. This has now been corrected.


  1. 1.

    Odum, E. P. Fundamentals of Ecology (Saunders, Philadelphia, 1953).

  2. 2.

    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

    Article  PubMed  Google Scholar 

  4. 4.

    Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Article  Google Scholar 

  5. 5.

    Baeten, L. et al. A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect. Plant Ecol. Evol. Syst. 15, 281–291 (2013).

    Article  Google Scholar 

  6. 6.

    Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7, 4–11 (2009).

    Article  Google Scholar 

  8. 8.

    Bateman, I. J. et al. Bringing ecosystem services into economic decision making: land use in the United Kingdom. Science 341, 45–50 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Byrnes, J. E. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014). Reviews the current methods for measuring multifunctionality in biodiversity–ecosystem function research.

  10. 10.

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015). Shows that the relationship between multifunctionality and its drivers depends on stakeholder priorities and the weighting of different functions.

  11. 11.

    Mastrangelo, M. E. et al. Concepts and methods for landscape multifunctionality and a unifying framework based on ecosystem services. Landsc. Ecol. 29, 345–358 (2014).

    Article  Google Scholar 

  12. 12.

    Bradford, M. A. et al. Discontinuity in the response of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014). The first paper to question the capacity of multifunctionality measures to represent overall ecosystem function..

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Bradford, M.A. et al. Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, E5491 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Byrnes, J. et al. Multifunctionality does not imply that all functions are positively correlated. Proc. Natl Acad. Sci. USA 111, E5490 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Sala, O. E., Jackson, R. B., Mooney, H. A. & Howarth, R. W. (eds) Methods in Ecosystem Science (Springer, New York, 2000).

  16. 16.

    Magurran, A. Ecological Diversity and its Measurement (Springer, New York, 1988).

  17. 17.

    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).

    Article  PubMed  Google Scholar 

  18. 18.

    Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).

    Article  PubMed  Google Scholar 

  19. 19.

    Duffy, J. E. et al. Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol. Lett. 6, 637–645 (2003).

    Article  Google Scholar 

  20. 20.

    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Gamfeldt, L. & Roger, F. Revisiting the biodiversity–ecosystem multifunctionality relationship. Nat. Ecol. Evol. 1, 0168 (2017).

    Article  Google Scholar 

  23. 23.

    van der Plas, F. et al. ‘Jack-of-all-trades’ effects drive biodiversity–ecosystem multifunctionality relationships. Nat. Commun. 7, 11109 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Berdugo, M., Kéfi, S., Soliveres, S. & Maestre, F. T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 0003 (2017).

    Article  Google Scholar 

  25. 25.

    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Soliveres, S. et al. Locally rare species influence grassland ecosystem multifunctionality. Phil. Trans. R. Soc. B 371, 20150269 (2016).

    Article  PubMed  Google Scholar 

  27. 27.

    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Article  Google Scholar 

  30. 30.

    Manning, P., Taylor, G. & Hanley, M. E. Bioenergy, food production and biodiversity - an unlikely alliance? GCB Bioenergy 7, 570–576 (2015).

    Article  Google Scholar 

  31. 31.

    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Batary, P. et al. The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nat. Ecol. Evol. 1, 1279–1284 (2017).

    Article  PubMed  Google Scholar 

  33. 33.

    Mouillot, D., Villéger, S., Scherer-Lorenzen, M. & Mason, N.W. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 6, e17476 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Perkins, D. M. et al. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Glob. Change Biol. 21, 396–406 (2015).

    Article  Google Scholar 

  35. 35.

    Dooley, A. F. et al. Testing the effects of diversity on ecosystem multifunctionality using a multivariate model. Ecol. Lett. 18, 1242–1251 (2015).

    Article  Google Scholar 

  36. 36.

    Mori, A. S. et al. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecol. Lett. 19, 249–259 (2016).

    Article  PubMed  Google Scholar 

  37. 37.

    Alsterberg, C. et al. Habitat diversity and ecosystem multifunctionality—the importance of direct and indirect effects. Sci. Adv. 3, e1601475 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Soliveres, S. et al. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Glob. Ecol. Biogeogr. 12, 1408–1416 (2014).

    Article  Google Scholar 

  39. 39.

    Wood, S. et al. Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. J. Appl. Ecol. 52, 744–752 (2015).

    Article  CAS  Google Scholar 

  40. 40.

    Constán-Nava, S., Soliveres, S., Torices, R., Serra, L. & Bonet, A. Direct and indirect effects of invasion by the alien tree Ailanthus altissima on riparian plant communities and ecosystem multifunctionality. Biol. Invasions 17, 1095–1108 (2015).

    Article  Google Scholar 

  41. 41.

    Lundholm, J. T. Green roof plant species diversity improves ecosystem multifunctionality. J. Appl. Ecol. 52, 726–734 (2015).

    Article  CAS  Google Scholar 

  42. 42.

    Storkey, J. et al. Engineering a plant community to deliver multiple ecosystem services. Ecol. Appl. 25, 1034–1043 (2015).

    Article  PubMed  Google Scholar 

  43. 43.

    Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2016).

    Article  Google Scholar 

  44. 44.

    Sircely, J. & Naeem, S. Biodiversity and ecosystem multi-functionality: observed relationships in smallholder fallows in western Kenya. PLoS ONE 7, e50152 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Brandt, J. Multifunctional landscapes – perspectives for the future. J. Env. Sci. 15, 187–192 (2003).

    Google Scholar 

  46. 46.

    de Groot, R. Function analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 75, 175–186 (2006).

    Article  Google Scholar 

  47. 47.

    Maron, M. et al. Towards a threat assessment framework for ecosystem services. Trends Ecol. Evol. 32, 240–248 (2017).

    Article  PubMed  Google Scholar 

  48. 48.

    Chan, K. A. M., Shaw, M. R., Cameron, D. R., Underwood, E. C. & Daily, G. Conservation planning for ecosystem services. PLoS Biol. 4, e379 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Lavorel, S. et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 99, 135–147 (2011).

    Article  Google Scholar 

  50. 50.

    Raudsepp-Hearne, C., Peterson, G. D., & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010). An important example of the ecosystem services approach to describing the co-supply of multiple ecosystem services on large scales.

    Article  PubMed  Google Scholar 

  51. 51.

    Mouchet, M. A. et al. Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecol. Indic. 73, 23–28 (2017).

    Article  Google Scholar 

  52. 52.

    Stürck, J. & Verburg, P. H. Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landsc. Ecol. 32, 481–500 (2017).

    Article  Google Scholar 

  53. 53.

    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Whittingham, M. J. The future of agri-environment schemes: biodiversity gains and ecosystem service delivery? J. Appl. Ecol. 48, 509–513 (2011).

    Article  Google Scholar 

  55. 55.

    Polasky, S. et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 141, 1505–1524 (2008).

    Article  Google Scholar 

  56. 56.

    Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).

    Article  PubMed  Google Scholar 

  57. 57.

    Tongway, D. & Hindley, N. Landscape function analysis: a system for monitoring rangeland function. Afr. J. Range Forage Sci. 21, 109–113 (2004).

    Article  Google Scholar 

  58. 58.

    Keith, H. et al. Ecosystem accounts define explicit and spatial trade-offs for managing natural resources. Nat. Ecol. Evol. 1, 1683–1692 (2017).

    Article  PubMed  Google Scholar 

  59. 59.

    Plottu, E. & Plottu, B. The concept of total economic value of environment: a reconsideration within a hierarchical rationality. Ecol. Econ. 61, 52–61 (2007).

    Article  Google Scholar 

  60. 60.

    Haines-Young, R. & Potschin, M. CICES V4.3-Report Prepared following Consultation 440 on CICES Version 4, August–December 2012 EEA Framework Contract No. 441 EEA/IEA/09/003 (Univ. Nottingham, Nottingham, 2013).

  61. 61.

    Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23 (2016).

    Article  Google Scholar 

  62. 62.

    Jax, K. Ecosystem Functioning (Cambridge Univ. Press, Cambridge, 2010).

  63. 63.

    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. 64.

    Meyer, S. T., Koch, C. & Weisser, W. W. Towards a standardised rapid ecosystem function assessment (REFA). Trends Ecol. Evol. 30, 390–397 (2015).

    Article  PubMed  Google Scholar 

  65. 65.

    Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Herrick, J. E. et al. National ecosystem assessments supported by scientific and local knowledge. Front. Ecol. Environ. 8, 403–408 (2010).

    Article  Google Scholar 

  67. 67.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    Article  PubMed  CAS  Google Scholar 

  68. 68.

    Chan, K. M. A. et al. Why protect nature? Rethinking values and the environment. Proc. Natl Acad. Sci. USA 113, 1462–1465 (2016).

    Article  PubMed  CAS  Google Scholar 

  69. 69.

    Derak, M. & Cortina, J. Multi-criteria participative evaluation of Pinus halepensis plantations in a semiarid area of southeast Spain. Ecol. Indic. 43, 56–68 (2014).

    Article  Google Scholar 

  70. 70.

    Darvill, R. & Lindo, Z. The inclusion of stakeholders and cultural ecosystem services in land management trade-off decisions using an ecosystem services approach. Landsc. Ecol. 31, 533–545 (2016).

    Article  Google Scholar 

  71. 71.

    Mace, G. M., Hails, R. S., Cryle, P., Harlow, J. & Clarke, S. J. Towards a risk register for natural capital. J. Appl. Ecol. 52, 641–653 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Manning, P. et al. Simple measures of climate, soil properties and plant traits predict national‐scale grassland soil carbon stocks. J. Appl. Ecol. 52, 1188–1196 (2015).

    Article  CAS  Google Scholar 

  73. 73.

    Maxim, L., Spandenberg, J. H. & O’Connor, M. An analysis of risks for biodiversity under the DPSIR framework. Ecol. Econ. 69, 12–23 (2009).

    Article  Google Scholar 

  74. 74.

    Díaz, S. et al. The IPBES Conceptual Framework - connecting nature and people. Curr. Opin. Env. Sust. 14, 1–16 (2015).

    Article  Google Scholar 

  75. 75.

    Mitchell, M. G. E., Bennett, E. M. & Gonzales, A. Forest fragments modulate the provision of multiple ecosystem services. J. Appl. Ecol. 51, 909–918 (2014).

    Article  Google Scholar 

  76. 76.

    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes‐eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    Article  PubMed  Google Scholar 

  77. 77.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    Article  PubMed  Google Scholar 

  78. 78.

    Pasari, J. R., Levi, T., Zavaleta, E. S. & Tilman, D. Several scales of biodiversity affect ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 110, 10219–10222 (2013).

    Article  PubMed  Google Scholar 

  79. 79.

    Hooda, P. S., Edwards, A. C., Anderson, H. A. & Miller, A. A review of water quality concerns in livestock farming areas. Sci. Total Environ. 250, 143–167 (2000).

    Article  PubMed  CAS  Google Scholar 

  80. 80.

    Wolff, S., Schulp, C. J. E. & Verburg, P. H. Mapping ecosystem services demand: a review of current research and future perspectives. Ecol. Indic. 55, 159–171 (2015).

    Article  Google Scholar 

  81. 81.

    Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).

    Article  PubMed  Google Scholar 

  82. 82.

    Diener, E. D., Emmons, R. A., Larsen, R. J. & Griffin, S. The satisfaction with life scale. J. Pers. Assess. 49, 71–75 (1985).

    Article  PubMed  CAS  Google Scholar 

  83. 83.

    Fürstenau, C. et al. Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Eur. J. For. Res. 126, 225–239 (2007).

    Article  Google Scholar 

Download references


C. Penone, M. Felipe Lucia and M. Perring provided useful comments on earlier versions of the paper. P.M. acknowledges support from the German Research Foundation (DFG; MA 7144/1-1). F.T.M. acknowledges support from the European Research Council (ERC grant agreement 647038 (BIODESERT)). We thank the FunDivEUROPE consortium (EU Seventh Framework Programme (FP7/2007-2013), grant agreement 265171) for support and for the data used in the examples.

Author information




P.M. conceived the study and wrote the initial draft, which was developed and revised by all other authors. P.M. and F.v.d.P. designed and performed analyses.

Corresponding author

Correspondence to Peter Manning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Supplementary Note

R based tutorial demonstrating how ecosystem function and ecosystem service multifunctionality can be quantified, as shown in examples 1 and 2, and the decision-making process behind this

Supplementary Data

Data used in Examples 1 and 2. Originally used in ref. 51. See ref. 51 for methods

Supplementary Code 1

R scripts for the quantification of EF-multifunctionality and ES-multifunctionality, used to compute example 1

Supplementary Code 2

R scripts for the quantification of EF-multifunctionality and ES-multifunctionality, used to compute example 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manning, P., van der Plas, F., Soliveres, S. et al. Redefining ecosystem multifunctionality. Nat Ecol Evol 2, 427–436 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing