Prominent hypotheses advanced over the past two decades have sought to characterize the Late Cretaceous continental vertebrate palaeobiogeography of Gondwanan landmasses, but have proved difficult to test because terrestrial vertebrates from the final ~30 million years of the Mesozoic are extremely rare and fragmentary on continental Africa (including the then-conjoined Arabian Peninsula but excluding the island of Madagascar). Here we describe a new titanosaurian sauropod dinosaur, Mansourasaurus shahinae gen. et sp. nov., from the Upper Cretaceous (Campanian) Quseir Formation of the Dakhla Oasis of the Egyptian Western Desert. Represented by an associated partial skeleton that includes cranial elements, Mansourasaurus is the most completely preserved land-living vertebrate from the post-Cenomanian Cretaceous (~94–66 million years ago) of the African continent. Phylogenetic analyses demonstrate that Mansourasaurus is nested within a clade of penecontemporaneous titanosaurians from southern Europe and eastern Asia, thereby providing the first unambiguous evidence for a post-Cenomanian Cretaceous continental vertebrate clade that inhabited both Africa and Europe. The close relationship of Mansourasaurus to coeval Eurasian titanosaurians indicates that terrestrial vertebrate dispersal occurred between Eurasia and northern Africa after the tectonic separation of the latter from South America ~100 million years ago. These findings counter hypotheses that dinosaur faunas of the African mainland were completely isolated during the post-Cenomanian Cretaceous.

  • Subscribe to Nature Ecology & Evolution for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Krause, D. W., Prasad, G. V. R., von Koenigswald, W., Sahni, A. & Grine, F. E. Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390, 504–507 (1997).

  2. 2.

    Sampson, S. D. et al. Predatory dinosaur remains from Madagascar: implications for the Cretaceous biogeography of Gondwana. Science 280, 1048–1051 (1998).

  3. 3.

    Sereno, P. C., Wilson, J. A. & Conrad, J. L. New dinosaurs link southern landmasses in the mid-Cretaceous. Proc. R. Soc. Lond. B 217, 1325–1330 (2004).

  4. 4.

    Gheerbrant, E. & Rage, J.-C. Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 224–246 (2006).

  5. 5.

    Upchurch, P. Gondwanan break-up: legacies of a lost world? Trends Ecol. Evol. 23, 229–236 (2008).

  6. 6.

    Ali, J. R. & Krause, D. W. Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis. J. Biogeogr. 38, 1855–1872 (2011).

  7. 7.

    Ezcurra, M. D. & Agnolín, F. L. A new global palaeobiogeographical model for the late Mesozoic and early Tertiary. Syst. Biol. 61, 553–566 (2012).

  8. 8.

    Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X. & Brusatte, S. L. Island life in the Cretaceous – faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys 469, 1–161 (2015).

  9. 9.

    Gorscak, E. & O’Connor, P. M. Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history. Biol. Lett. 12, 20151047 (2016).

  10. 10.

    Le Loeuff, J. The Campano-Maastrichtian vertebrate faunas from southern Europe and their relationships with other faunas in the world; palaeobiogeographical implications. Cretaceous Res. 12, 93–114 (1991).

  11. 11.

    Pereda-Suberbiola, X. Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review. Bull. Soc. Geol. Fr. 180, 57–71 (2009).

  12. 12.

    Churcher, C. S. Giant Cretaceous lungfish Neoceratodus tuberculatus from a deltaic environment in the Quseir (=Baris) Formation of Kharga Oasis, Western Desert of Egypt. J. Vertebr. Paleontol. 15, 845–849 (1995).

  13. 13.

    Mahmoud, M. S. Palynological dating of the Quseir Formation, Kharga Oasis (Egypt). Arab. Gulf J. Sci. Res. 16, 267–281 (1998).

  14. 14.

    Mahmoud, M. S. Palynology and palaeoenvironment of the Quseir Formation (Campanian) from central Egypt. J. Afr. Earth Sci. 36, 135–148 (2003).

  15. 15.

    El Atfy, H., Sallam, H., Jasper, A. & Uhl, D. The first evidence of paleo-wildfire from the Campanian (Late Cretaceous) of North Africa. Cretaceous Res. 57, 306–310 (2016).

  16. 16.

    Sallam, H. M. et al. Vertebrate paleontological exploration of the Upper Cretaceous succession in the Dakhla and Kharga Oases, Western Desert, Egypt. J. Afr. Earth Sci. 117, 223–234 (2016).

  17. 17.

    D’Emic, M. D. The early evolution of titanosauriform sauropod dinosaurs. Zool. J. Linn. Soc. 166, 624–671 (2012).

  18. 18.

    Wilson, J. A. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zool. J. Linn. Soc. 136, 217–276 (2002).

  19. 19.

    Mannion, P. D., Upchurch, P., Barnes, R. N. & Mateus, O. Osteology of the Late Jurassic Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary history of basal titanosauriforms. Zool. J. Linn. Soc. 168, 98–206 (2013).

  20. 20.

    Curry Rogers, K. in The Sauropods: Evolution and Paleobiology (eds Curry Rogers, K. & Wilson, J. A.) 50–103 (Univ. California Press, Berkeley, 2005).

  21. 21.

    Kennedy, W. J., Klinger, H. C. & Mateer, N. J. First record of an Upper Cretaceous sauropod dinosaur from Zululand, South Africa. S. Afr. J. Sci. 83, 173–174 (1987).

  22. 22.

    Rauhut, O. W. M. & Werner, C. First record of a Maastrichtian sauropod dinosaur from Egypt. Palaeontol. Afr. 34, 63–67 (1997).

  23. 23.

    Mateus, O. et al. Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola. An. Acad. Bras. Cienc. 83, 221–233 (2011).

  24. 24.

    Pereda Suberbiola, X., Bardet, N., Iarochène, M., Bouya, B. & Amaghzaz, M. The first record of a sauropod dinosaur from the Late Cretaceous phosphates of Morocco. J. Afr. Earth Sci. 40, 81–88 (2004).

  25. 25.

    Curry Rogers, K. & Forster, C. A. The skull of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Late Cretaceous of Madagascar. J. Vertebr. Paleontol. 24, 121–144 (2004).

  26. 26.

    Le Loeuff, J. in Thunder-Lizards: The Sauropodomorph Dinosaurs (eds Tidwell, V. & Carpenter, K.) 115–137 (Indiana Univ. Press, Bloomington, 2005).

  27. 27.

    Wilson, J. A. Redescription of the Mongolian sauropod Nemegtosaurus mongolienesis Nowinski (Dinosauria: Saurischia) and comments on Late Cretaceous sauropod diversity. J. Syst. Palaeontol. 3, 283–318 (2005).

  28. 28.

    Martínez, R. D. F. et al. A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: implications for the evolution and paleobiology of Titanosauria. PLoS. ONE 11, e0151661 (2016).

  29. 29.

    Wilson, J. A., Pol, D., Carvalho, A. B. & Zaher, H. The skull of the titanosaur Tapuiasaurus macedoi (Dinosauria: Sauropoda), a basal titanosaur from the Lower Cretaceous of Brazil. Zool. J. Linn. Soc. 178, 611–662 (2016).

  30. 30.

    Machado, E. B., Avilla, L. S., Nava, W. R., Campos, D. A. & Kellner, A. W. A. A new titanosaur sauropod from the Late Cretaceous of Brazil. Zootaxa 3701, 301–321 (2013).

  31. 31.

    Borsuk-Bialynicka, M. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Palaeontol. Pol. 37, 5–63 (1977).

  32. 32.

    Díez Díaz, V., Pereda Suberbiola, X. & Sanz, J. L. Appendicular skeleton and dermal armour of the Late Cretaceous titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from Spain. Palaeontol. Electron. 16, 19A (2013).

  33. 33.

    Gorscak, E., O’Connor, P. M., Stevens, N. J. & Roberts, E. M. The basal titanosaurian Rukwatitan bisepultus (Dinosauria, Sauropoda) from the middle Cretaceous Galula Formation, Rukwa Rift Basin, southwestern Tanzania. J. Vertebr. Paleontol. 34, 1133–1154 (2014).

  34. 34.

    González Riga, B. J., Lamanna, M. C., Ortiz David, L. D., Calvo, J. O. & Coria, J. P. A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot. Sci. Rep. 6, 19165 (2016).

  35. 35.

    Torsvik, T. H., Rousse, S., Labails, C. & Smethurst, M. A. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int. 177, 1315–1333 (2009).

  36. 36.

    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).

  37. 37.

    Jacobs, L. L., Winkler, D. A. & Gomani, E. M. Cretaceous dinosaurs of Africa: examples from Cameroon and Malawi. Mem. Qld Mus. 39, 595–610 (1996).

  38. 38.

    O’Connor, P. M. et al. A new vertebrate fauna from the Cretaceous Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania. J. Afr. Earth Sci. 44, 277–288 (2006).

  39. 39.

    Moody, R. T. J., & Sutcliffe, P. J. C. The Cretaceous deposits of the Iullemmeden Basin of Niger, central West Africa. Cretaceous Res. 12, 137–157 (1991).

  40. 40.

    Lamanna, M. C., Smith, J. B., Attia, Y. & Dodson, P. From dinosaurs to dyrosaurids (Crocodyliformes): removal of the post-Cenomanian (Late Cretaceous) record of Ornithischia from Africa. J. Vertebr. Paleontol. 24, 764–768 (2004).

  41. 41.

    O’Connor, P. M., Sertich, J. J. W. & Manthi, F. K. A pterodactyloid pterosaur from the Upper Cretaceous Lapurr sandstone, West Turkana, Kenya. An. Acad. Bras. Cienc. 83, 309–315 (2011).

  42. 42.

    Le Loeuff, J. European titanosaurids. Rev. Paléobiol. 7, 105–117 (1993).

  43. 43.

    Rabi, M., Tong, H. & Botfalavi, G. A new species of the side-necked turtle Foxemys (Pelomedusoides: Bothremydidae) from the Late Cretaceous of Hungary and the historical biogeography of the Bothremydini. Geol. Mag. 149, 662–674 (2012).

  44. 44.

    Miguel, R., Gallo, V. & Morrone, J. J. Distributional patterns of †Mawsoniidae (Sarcopterygii: Actinistia). An. Acad. Bras. Cienc. 86, 159–170 (2014).

  45. 45.

    Tortosa, T. et al. A new abelisaurid dinosaur from the Late Cretaceous of southern France: palaeobiogeographical implications. Ann. Paleontol. 100, 63–86 (2014).

  46. 46.

    Sanz, J. L., Powell, J. E., Le Loeuff, J., Martínez, R. & Pereda-Suberbiola, X. Sauropod remains from the Upper Cretaceous of Laño (northcentral Spain). Titanosaur phylogenetic relationships. Estud. Mus. Cienc. Nat. Alava 14, 235–255 (1999).

  47. 47.

    Díez Díaz, V. et al A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Lo Hueco (Cuenca, Spain). Cretaceous Res. 68, 49–60 (2016).

  48. 48.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

  49. 49.

    Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

  50. 50.

    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).

  51. 51.

    Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci. USA 110, 228–233 (2013).

  52. 52.

    Blakey, R. SIA3584: Paleogeographic Earth Reconstruction 90 Million Years Ago (2010, accessed 10 January 2018); http://scienceviews.com/photo/library/SIA3584.html

  53. 53.

    Gradstein, F. M., Ogg, J. G. & Hilgen, F. J. On the geologic time scale. Newsl. Stratigr. 45, 171–188 (2012).

Download references


We thank A. Othman and A. Habib of the Faculty of Science at Mansoura University for logistical support, and M. El-Amir and F. Ibrahim (MUVP) for their critical roles in the field and laboratory work. A. McAfee skilfully executed the skeletal reconstruction in Fig. 1c and contributed greatly to Fig. 2, the other components of Fig. 1, and Supplementary Figs. 1–18. D. and R. Blakey kindly provided permission to reproduce the palaeogeographic map in Fig. 3a. We thank M. D’Emic and V. Díez Díaz for discussions, and V. Díez Díaz for providing unpublished photographs of the dentary of Ampelosaurus. Funding was provided by grants from Mansoura University, the Jurassic Foundation, the Leakey Foundation, the National Geographic Society/Waitt Foundation (grant no. W88-10) and the National Science Foundation (EAR-1349825 to P.M.O.).

Author information


  1. Mansoura University Vertebrate Paleontology Center, Department of Geology, Faculty of Science, Mansoura University, Mansoura, Egypt

    • Hesham M. Sallam
    • , Iman A. El-Dawoudi
    • , Sanaa El-Sayed
    • , Sara Saber
    •  & Mahmoud A. Kora
  2. Department of Biological Sciences, Ohio University, Athens, OH, USA

    • Eric Gorscak
  3. Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, OH, USA

    • Eric Gorscak
    •  & Patrick M. O’Connor
  4. Integrative Research Center, The Field Museum of Natural History, Chicago, IL, USA

    • Eric Gorscak
  5. Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA

    • Patrick M. O’Connor
  6. Department of Geology, Faculty of Science, Assiut University, Assiut, Egypt

    • Sara Saber
  7. Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO, USA

    • Joseph J. W. Sertich
  8. Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

    • Erik R. Seiffert
  9. Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, PA, USA

    • Matthew C. Lamanna


  1. Search for Hesham M. Sallam in:

  2. Search for Eric Gorscak in:

  3. Search for Patrick M. O’Connor in:

  4. Search for Iman A. El-Dawoudi in:

  5. Search for Sanaa El-Sayed in:

  6. Search for Sara Saber in:

  7. Search for Mahmoud A. Kora in:

  8. Search for Joseph J. W. Sertich in:

  9. Search for Erik R. Seiffert in:

  10. Search for Matthew C. Lamanna in:


H.M.S. directed the project and supervised the collection of the fossils in the field; H.M.S., I.A.E-D., S.E-S., S.S. and M.A.K. collected the fossils; I.A.E-D. and S.E-S. supervised fossil preparation; I.A.E-D. curated and measured the fossils; fossils were described by E.G., P.M.O., I.A.E-D. and M.C.L.; phylogenetic analysis was performed by E.G.; H.M.S., E.G., P.M.O., I.A.E-D., J.J.W.S., E.R.S. and M.C.L. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Hesham M. Sallam.

Supplementary information

  1. Supplementary Information

    Supplementary methods, figures, data and references.

  2. Life Sciences Reporting Summary

  3. Supplementary Information 2

    Data matrix for phylogenetic analysis without ulnar character data.

  4. Supplementary Information 3

    Data matrix for phylogenetic analysis with ulnar character data.

About this article

Publication history






Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.