Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa


Prominent hypotheses advanced over the past two decades have sought to characterize the Late Cretaceous continental vertebrate palaeobiogeography of Gondwanan landmasses, but have proved difficult to test because terrestrial vertebrates from the final ~30 million years of the Mesozoic are extremely rare and fragmentary on continental Africa (including the then-conjoined Arabian Peninsula but excluding the island of Madagascar). Here we describe a new titanosaurian sauropod dinosaur, Mansourasaurus shahinae gen. et sp. nov., from the Upper Cretaceous (Campanian) Quseir Formation of the Dakhla Oasis of the Egyptian Western Desert. Represented by an associated partial skeleton that includes cranial elements, Mansourasaurus is the most completely preserved land-living vertebrate from the post-Cenomanian Cretaceous (~94–66 million years ago) of the African continent. Phylogenetic analyses demonstrate that Mansourasaurus is nested within a clade of penecontemporaneous titanosaurians from southern Europe and eastern Asia, thereby providing the first unambiguous evidence for a post-Cenomanian Cretaceous continental vertebrate clade that inhabited both Africa and Europe. The close relationship of Mansourasaurus to coeval Eurasian titanosaurians indicates that terrestrial vertebrate dispersal occurred between Eurasia and northern Africa after the tectonic separation of the latter from South America ~100 million years ago. These findings counter hypotheses that dinosaur faunas of the African mainland were completely isolated during the post-Cenomanian Cretaceous.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Location, quarry map and skeletal reconstruction of Mansourasaurus shahinae gen. et sp. nov. (MUVP 200).
Fig. 2: Skeletal anatomy of Mansourasaurus shahinae gen. et sp. nov. (MUVP 200).
Fig. 3: Phylogenetic, temporal and palaeobiogeographic context of Mansourasaurus shahinae gen et sp. nov. and other saltasaurid titanosaurian sauropod dinosaurs.


  1. 1.

    Krause, D. W., Prasad, G. V. R., von Koenigswald, W., Sahni, A. & Grine, F. E. Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390, 504–507 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    Sampson, S. D. et al. Predatory dinosaur remains from Madagascar: implications for the Cretaceous biogeography of Gondwana. Science 280, 1048–1051 (1998).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Sereno, P. C., Wilson, J. A. & Conrad, J. L. New dinosaurs link southern landmasses in the mid-Cretaceous. Proc. R. Soc. Lond. B 217, 1325–1330 (2004).

    Article  Google Scholar 

  4. 4.

    Gheerbrant, E. & Rage, J.-C. Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 224–246 (2006).

    Article  Google Scholar 

  5. 5.

    Upchurch, P. Gondwanan break-up: legacies of a lost world? Trends Ecol. Evol. 23, 229–236 (2008).

    Article  PubMed  Google Scholar 

  6. 6.

    Ali, J. R. & Krause, D. W. Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis. J. Biogeogr. 38, 1855–1872 (2011).

    Article  Google Scholar 

  7. 7.

    Ezcurra, M. D. & Agnolín, F. L. A new global palaeobiogeographical model for the late Mesozoic and early Tertiary. Syst. Biol. 61, 553–566 (2012).

    Article  PubMed  Google Scholar 

  8. 8.

    Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X. & Brusatte, S. L. Island life in the Cretaceous – faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys 469, 1–161 (2015).

    Article  Google Scholar 

  9. 9.

    Gorscak, E. & O’Connor, P. M. Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history. Biol. Lett. 12, 20151047 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Le Loeuff, J. The Campano-Maastrichtian vertebrate faunas from southern Europe and their relationships with other faunas in the world; palaeobiogeographical implications. Cretaceous Res. 12, 93–114 (1991).

    Article  Google Scholar 

  11. 11.

    Pereda-Suberbiola, X. Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review. Bull. Soc. Geol. Fr. 180, 57–71 (2009).

    Article  Google Scholar 

  12. 12.

    Churcher, C. S. Giant Cretaceous lungfish Neoceratodus tuberculatus from a deltaic environment in the Quseir (=Baris) Formation of Kharga Oasis, Western Desert of Egypt. J. Vertebr. Paleontol. 15, 845–849 (1995).

    Article  Google Scholar 

  13. 13.

    Mahmoud, M. S. Palynological dating of the Quseir Formation, Kharga Oasis (Egypt). Arab. Gulf J. Sci. Res. 16, 267–281 (1998).

    Google Scholar 

  14. 14.

    Mahmoud, M. S. Palynology and palaeoenvironment of the Quseir Formation (Campanian) from central Egypt. J. Afr. Earth Sci. 36, 135–148 (2003).

    Article  Google Scholar 

  15. 15.

    El Atfy, H., Sallam, H., Jasper, A. & Uhl, D. The first evidence of paleo-wildfire from the Campanian (Late Cretaceous) of North Africa. Cretaceous Res. 57, 306–310 (2016).

    Article  Google Scholar 

  16. 16.

    Sallam, H. M. et al. Vertebrate paleontological exploration of the Upper Cretaceous succession in the Dakhla and Kharga Oases, Western Desert, Egypt. J. Afr. Earth Sci. 117, 223–234 (2016).

    Article  Google Scholar 

  17. 17.

    D’Emic, M. D. The early evolution of titanosauriform sauropod dinosaurs. Zool. J. Linn. Soc. 166, 624–671 (2012).

    Article  Google Scholar 

  18. 18.

    Wilson, J. A. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zool. J. Linn. Soc. 136, 217–276 (2002).

    Article  Google Scholar 

  19. 19.

    Mannion, P. D., Upchurch, P., Barnes, R. N. & Mateus, O. Osteology of the Late Jurassic Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary history of basal titanosauriforms. Zool. J. Linn. Soc. 168, 98–206 (2013).

    Article  Google Scholar 

  20. 20.

    Curry Rogers, K. in The Sauropods: Evolution and Paleobiology (eds Curry Rogers, K. & Wilson, J. A.) 50–103 (Univ. California Press, Berkeley, 2005).

  21. 21.

    Kennedy, W. J., Klinger, H. C. & Mateer, N. J. First record of an Upper Cretaceous sauropod dinosaur from Zululand, South Africa. S. Afr. J. Sci. 83, 173–174 (1987).

    Google Scholar 

  22. 22.

    Rauhut, O. W. M. & Werner, C. First record of a Maastrichtian sauropod dinosaur from Egypt. Palaeontol. Afr. 34, 63–67 (1997).

    Google Scholar 

  23. 23.

    Mateus, O. et al. Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola. An. Acad. Bras. Cienc. 83, 221–233 (2011).

    Article  PubMed  Google Scholar 

  24. 24.

    Pereda Suberbiola, X., Bardet, N., Iarochène, M., Bouya, B. & Amaghzaz, M. The first record of a sauropod dinosaur from the Late Cretaceous phosphates of Morocco. J. Afr. Earth Sci. 40, 81–88 (2004).

    Article  Google Scholar 

  25. 25.

    Curry Rogers, K. & Forster, C. A. The skull of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Late Cretaceous of Madagascar. J. Vertebr. Paleontol. 24, 121–144 (2004).

    Article  Google Scholar 

  26. 26.

    Le Loeuff, J. in Thunder-Lizards: The Sauropodomorph Dinosaurs (eds Tidwell, V. & Carpenter, K.) 115–137 (Indiana Univ. Press, Bloomington, 2005).

  27. 27.

    Wilson, J. A. Redescription of the Mongolian sauropod Nemegtosaurus mongolienesis Nowinski (Dinosauria: Saurischia) and comments on Late Cretaceous sauropod diversity. J. Syst. Palaeontol. 3, 283–318 (2005).

    Article  Google Scholar 

  28. 28.

    Martínez, R. D. F. et al. A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: implications for the evolution and paleobiology of Titanosauria. PLoS. ONE 11, e0151661 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wilson, J. A., Pol, D., Carvalho, A. B. & Zaher, H. The skull of the titanosaur Tapuiasaurus macedoi (Dinosauria: Sauropoda), a basal titanosaur from the Lower Cretaceous of Brazil. Zool. J. Linn. Soc. 178, 611–662 (2016).

    Article  Google Scholar 

  30. 30.

    Machado, E. B., Avilla, L. S., Nava, W. R., Campos, D. A. & Kellner, A. W. A. A new titanosaur sauropod from the Late Cretaceous of Brazil. Zootaxa 3701, 301–321 (2013).

    Article  PubMed  Google Scholar 

  31. 31.

    Borsuk-Bialynicka, M. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Palaeontol. Pol. 37, 5–63 (1977).

    Google Scholar 

  32. 32.

    Díez Díaz, V., Pereda Suberbiola, X. & Sanz, J. L. Appendicular skeleton and dermal armour of the Late Cretaceous titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from Spain. Palaeontol. Electron. 16, 19A (2013).

    Google Scholar 

  33. 33.

    Gorscak, E., O’Connor, P. M., Stevens, N. J. & Roberts, E. M. The basal titanosaurian Rukwatitan bisepultus (Dinosauria, Sauropoda) from the middle Cretaceous Galula Formation, Rukwa Rift Basin, southwestern Tanzania. J. Vertebr. Paleontol. 34, 1133–1154 (2014).

    Article  Google Scholar 

  34. 34.

    González Riga, B. J., Lamanna, M. C., Ortiz David, L. D., Calvo, J. O. & Coria, J. P. A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot. Sci. Rep. 6, 19165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Torsvik, T. H., Rousse, S., Labails, C. & Smethurst, M. A. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int. 177, 1315–1333 (2009).

    Article  Google Scholar 

  36. 36.

    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  37. 37.

    Jacobs, L. L., Winkler, D. A. & Gomani, E. M. Cretaceous dinosaurs of Africa: examples from Cameroon and Malawi. Mem. Qld Mus. 39, 595–610 (1996).

    Google Scholar 

  38. 38.

    O’Connor, P. M. et al. A new vertebrate fauna from the Cretaceous Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania. J. Afr. Earth Sci. 44, 277–288 (2006).

    Article  Google Scholar 

  39. 39.

    Moody, R. T. J., & Sutcliffe, P. J. C. The Cretaceous deposits of the Iullemmeden Basin of Niger, central West Africa. Cretaceous Res. 12, 137–157 (1991).

    Article  Google Scholar 

  40. 40.

    Lamanna, M. C., Smith, J. B., Attia, Y. & Dodson, P. From dinosaurs to dyrosaurids (Crocodyliformes): removal of the post-Cenomanian (Late Cretaceous) record of Ornithischia from Africa. J. Vertebr. Paleontol. 24, 764–768 (2004).

    Article  Google Scholar 

  41. 41.

    O’Connor, P. M., Sertich, J. J. W. & Manthi, F. K. A pterodactyloid pterosaur from the Upper Cretaceous Lapurr sandstone, West Turkana, Kenya. An. Acad. Bras. Cienc. 83, 309–315 (2011).

    Article  PubMed  Google Scholar 

  42. 42.

    Le Loeuff, J. European titanosaurids. Rev. Paléobiol. 7, 105–117 (1993).

    Google Scholar 

  43. 43.

    Rabi, M., Tong, H. & Botfalavi, G. A new species of the side-necked turtle Foxemys (Pelomedusoides: Bothremydidae) from the Late Cretaceous of Hungary and the historical biogeography of the Bothremydini. Geol. Mag. 149, 662–674 (2012).

    Article  Google Scholar 

  44. 44.

    Miguel, R., Gallo, V. & Morrone, J. J. Distributional patterns of †Mawsoniidae (Sarcopterygii: Actinistia). An. Acad. Bras. Cienc. 86, 159–170 (2014).

    Article  PubMed  Google Scholar 

  45. 45.

    Tortosa, T. et al. A new abelisaurid dinosaur from the Late Cretaceous of southern France: palaeobiogeographical implications. Ann. Paleontol. 100, 63–86 (2014).

    Article  Google Scholar 

  46. 46.

    Sanz, J. L., Powell, J. E., Le Loeuff, J., Martínez, R. & Pereda-Suberbiola, X. Sauropod remains from the Upper Cretaceous of Laño (northcentral Spain). Titanosaur phylogenetic relationships. Estud. Mus. Cienc. Nat. Alava 14, 235–255 (1999).

    Google Scholar 

  47. 47.

    Díez Díaz, V. et al A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Lo Hueco (Cuenca, Spain). Cretaceous Res. 68, 49–60 (2016).

    Article  Google Scholar 

  48. 48.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Google Scholar 

  50. 50.

    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).

    Article  PubMed  Google Scholar 

  51. 51.

    Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci. USA 110, 228–233 (2013).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Blakey, R. SIA3584: Paleogeographic Earth Reconstruction 90 Million Years Ago (2010, accessed 10 January 2018);

  53. 53.

    Gradstein, F. M., Ogg, J. G. & Hilgen, F. J. On the geologic time scale. Newsl. Stratigr. 45, 171–188 (2012).

    Article  Google Scholar 

Download references


We thank A. Othman and A. Habib of the Faculty of Science at Mansoura University for logistical support, and M. El-Amir and F. Ibrahim (MUVP) for their critical roles in the field and laboratory work. A. McAfee skilfully executed the skeletal reconstruction in Fig. 1c and contributed greatly to Fig. 2, the other components of Fig. 1, and Supplementary Figs. 1–18. D. and R. Blakey kindly provided permission to reproduce the palaeogeographic map in Fig. 3a. We thank M. D’Emic and V. Díez Díaz for discussions, and V. Díez Díaz for providing unpublished photographs of the dentary of Ampelosaurus. Funding was provided by grants from Mansoura University, the Jurassic Foundation, the Leakey Foundation, the National Geographic Society/Waitt Foundation (grant no. W88-10) and the National Science Foundation (EAR-1349825 to P.M.O.).

Author information




H.M.S. directed the project and supervised the collection of the fossils in the field; H.M.S., I.A.E-D., S.E-S., S.S. and M.A.K. collected the fossils; I.A.E-D. and S.E-S. supervised fossil preparation; I.A.E-D. curated and measured the fossils; fossils were described by E.G., P.M.O., I.A.E-D. and M.C.L.; phylogenetic analysis was performed by E.G.; H.M.S., E.G., P.M.O., I.A.E-D., J.J.W.S., E.R.S. and M.C.L. wrote the paper.

Corresponding author

Correspondence to Hesham M. Sallam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures, data and references.

Life Sciences Reporting Summary

Supplementary Information 2

Data matrix for phylogenetic analysis without ulnar character data.

Supplementary Information 3

Data matrix for phylogenetic analysis with ulnar character data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sallam, H.M., Gorscak, E., O’Connor, P.M. et al. New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa. Nat Ecol Evol 2, 445–451 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing