Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A southern African origin and cryptic structure in the highly mobile plains zebra

Abstract

The plains zebra (Equus quagga) is an ecologically important species of the African savannah. It is also one of the most numerous and widely distributed ungulates, and six subspecies have been described based on morphological variation. However, the within-species evolutionary processes have been difficult to resolve due to its high mobility and a lack of consensus regarding the population structure. We obtained genome-wide DNA polymorphism data from more than 167,000 loci for 59 plains zebras from across the species range, encompassing all recognized extant subspecies, as well as three mountain zebras (Equus zebra) and three Grevy’s zebras (Equus grevyi). Surprisingly, the population genetic structure does not mirror the morphology-based subspecies delineation, underlining the dangers of basing management units exclusively on morphological variation. We use demographic modelling to provide insights into the past phylogeography of the species. The results identify a southern African location as the most likely source region from which all extant populations expanded around 370,000 years ago. We show evidence for inclusion of the extinct and phenotypically divergent quagga (Equus quagga quagga) in the plains zebra variation and reveal that it was less divergent from the other subspecies than the northernmost (Ugandan) extant population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling areas for the identified plains zebra populations.
Fig. 2: Estimating effective migration surfaces and directionality index.
Fig. 3: Admixture proportions using NGSadmix.
Fig. 4: Principal component analysis plot showing clustering in the plains zebras using the 60 individuals in dataset 2.
Fig. 5: Maximum likelihood tree obtained using TreeMix without migration edges for the 67 individuals in dataset 1.
Fig. 6: Stairway plots for the seven plains zebra populations with at least three samples.

Similar content being viewed by others

References

  1. Owen-Smith, N. & Cumming, D. H. M. Comparative foraging strategies of grazing ungulates in African savanna grasslands. In Proc. XVII Int. Grasslands Congress New Zealand, 691–698 (SIR Publishing, Wellington, 1993).

  2. Lorenzen, E. D., Heller, R. & Siegismund, H. R. Comparative phylogeography of African savannah ungulates. Mol. Ecol. 21, 3656–3670 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Bell, R. H. V. A grazing ecosystem in the Serengeti. Sci. Am. 225, 86–93 (1971).

    Article  Google Scholar 

  4. Hack, M. A., East, R., Rubenstein, D. I. & Moehlman, P. A. in Equids: Zebras, Asses and Horses: Status Survey and Conservation Action Plan (ed. Moehlman, P. D.) 43–60 (IUCN/SSC Equid Specialist Group, Gland and Cambridge, 2002).

  5. Lorenzen, E. D., Arctander, P. & Siegismund, H. R. High variation and very low differentiation in wide ranging plains zebra (Equus quagga): insights from mtDNA and microsatellites. Mol. Ecol. 17, 2812–2824 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Groves, C. P. & Bell, C. H. New investigations on the taxonomy of the zebras genus Equus, subgenus Hippotigris. Mamm. Biol. 69, 182–196 (2004).

    Article  Google Scholar 

  7. Leonard, J. et al. A rapid loss of stripes: the evolutionary history of the extinct quagga. Biol. Lett. 1, 291–295 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oakenfull, E. A., Lim, H. N. & Ryder, O. A. A survey of equid mitochondrial DNA: implications for the evolution, genetic diversity and conservation of Equus. Conserv. Genet. 1, 341–355 (2000).

    Article  CAS  Google Scholar 

  9. Rubenstein, D., Low Mackey, B., Davidson, Z. D., Kebede, F. & King, S. R. B. Equus grevyi. IUCN Red List of Threatened Species 2016: e.T7950A89624491 (IUCN, accessed 10 September 2017); https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T7950A89624491.en.

  10. Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Crandall, K. A., Bininda-Emonds, O. R. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Churcher, C. S. & Richardson, M. L. in Evolution of African Mammals (eds Maglio, V. J. & Cooke, H. B. S.) 379–422 (Harvard Univ. Press, Cambridge, 1978).

  13. Klein, R. G. & Cruz-Uribe, K. Craniometry of the genus Equus and the taxonomic affinities of the extinct South African quagga. S. Afr. J. Sci. 95, 81–86 (1999).

    Google Scholar 

  14. Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Vilstrup, J. T. et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS. ONE 8, e55950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caro, T., Jones, T. & Davenport, T. R. B. Realities of documenting wildlife corridors in tropical countries. Biol. Conserv. 142, 2807–2811 (2009).

    Article  Google Scholar 

  17. Bradburd, G. S., Ralph, P. L., Coop, G. M. & Slatkin, M. A spatial framework for understanding population structure and admixture. PLoS Genet. 12, e1005703 (2016).

  18. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    Article  PubMed  Google Scholar 

  20. Jónsson, H. et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc. Natl. Acad. Sci. USA 111, 18655–18660 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heller, R., Chikhi, L. & Siegismund, H. R. The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS. ONE 8, e62992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazet, O., Rodríguez, W., Grusea, S., Boitard, S. & Chikhi, L. On the importance of being structured: instantaneous coalescence rates and a re-evaluation of human evolution. Heredity 116, 362–371 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Orlando, L. et al. Revising the recent evolutionary history of equids using ancient DNA. Proc. Natl. Acad. Sci. USA 106, 21754–21759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Groves, C. & Grubb, P. Ungulate Taxonomy (Johns Hopkins Univ. Press, Baltimore, 2011).

  25. Lorenzen, E. D., De Neergaard, R., Arctander, P. & Siegismund, H. R. Phylogeography, hybridization and Pleistocene refugia of the kob antelope (Kobus kob). Mol. Ecol. 16, 3241–3252 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Siegismund, H. R., Lorenzen, E. D. & Arctander, P. in Mammals of Africa: Volume VI. Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids (eds Kingdon, J. & Hoffmann, M.) 373–379 (Bloomesbury, London, 2013).

  27. Smitz, N. et al. Pan-African genetic structure in the African buffalo (Syncerus caffer): investigating intraspecific divergence. PLoS ONE 8, e56235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lorenzen, E. D., Simonsen, B. T., Kat, P. W., Arctander, P. & Siegismund, H. R. Hybridization between subspecies of waterbuck (Kobus ellipsiprymnus) in zones of overlap with limited introgression. Mol. Ecol. 15, 3787–3799 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Castañeda, I. S. et al. Hydroclimate variability in the Nile River Basin during the past 28,000 years. Earth Planet. Sci. Lett. 438, 47–56 (2016).

    Article  Google Scholar 

  30. Reynolds, D. J. et al. Reconstructing North Atlantic marine climate variability using an absolutely-dated sclerochronological network. Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 333–346 (2017).

    Article  Google Scholar 

  31. Reynolds, S. C. Mammalian body size changes and Plio–Pleistocene environmental shifts: implications for understanding hominin evolution in eastern and southern Africa. J. Hum. Evol. 53, 528–548 (2007).

    Article  PubMed  Google Scholar 

  32. Lorenzen, E. D., Arctander, P. & Siegismund, H. R. Regional genetic structuring and evolutionary history of the impala Aepyceros melampus. J. Hered. 97, 119–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Lorenzen, E. D., Masembe, C., Arctander, P. & Siegismund, H. R. A long-standing Pleistocene refugium in southern Africa and a mosaic of refugia in East Africa: insights from mtDNA and the common eland antelope. J. Biogeogr. 37, 571–581 (2010).

    Article  Google Scholar 

  34. Arctander, P., Johansen, C. & Coutellec-Vreto, M.-A. Phylogeography of three closely related African bovids (tribe Alcelaphini). Mol. Biol. Evol. 16, 1724–1739 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 359, 183–195 (2004).

    Article  CAS  Google Scholar 

  36. Peter, B. M. & Slatkin, M. Detecting range expansions from genetic data. Evolution 67, 3274–3289 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Städler, T., Haubold, B., Merino, C., Stephan, W. & Pfaffelhuber, P. The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics 182, 205–216 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Davey, J. W. et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499–510 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Puckett, E. E., Etter, P. D., Johnson, E. A. & Eggert, L. S. Phylogeographic analyses of American black bears (Ursus americanus) suggest four glacial refugia and complex patterns of postglacial admixture. Mol. Biol. Evol. 32, 2338–2350 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Rašić, G., Filipović, I., Weeks, A. R. & Hoffmann, A. A. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genom. 15, 275 (2014).

    Article  Google Scholar 

  41. Sutherland, B. J. G. et al. Salmonid chromosome evolution as revealed by a novel method for comparing RADseq linkage maps. Genome Biol. Evol. 8, 3600–3617 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Korneliussen, T., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2014).

    Article  Google Scholar 

  49. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS. Genet. 8, e1002967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Slatkin, M. & Excoffier, L. Serial founder effects during range expansion: a spatial analog of genetic drift. Genetics 191, 171–181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhatia, G., Patterson, N., Sankararaman, S. & Price, A. L. Estimating and interpreting F ST: the impact of rare variants. Genome Res. 23, 1514–1521 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Willing, E. M., Dreyer, C. & Ova Oosterhout, C. Estimates of genetic differentiation measured by F ST do not necessarily require large sample sizes when using many SNP markers. PLoS. ONE 7, e42649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McQuillan, R. et al. Runs of homozygosity in European populations. Am. J. Hum. Genet. 83, 359–372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, X. & Fu, Y.-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Excoffier, L. & Foll, M. fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27, 1332–1334 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS. Genet. 9, e1003905 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mailund, T., Dutheil, J. Y., Hobolth, A., Lunter, G. & Schierup, M. H. Estimating divergence time and ancestral effective population size of Bornean and Sumatran orangutan subspecies using a coalescent hidden Markov model. PLoS. Genet. 7, 1–15 (2011).

    Article  Google Scholar 

  62. Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 33, 67–77 (2016).

    Google Scholar 

  63. Edmonds, C. A., Lillie, A. S. & Cavalli-Sforza, L. L. Mutations arising in the wave front of an expanding population. Proc. Nat. Acad. Sci. USA 101, 975–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Klopfstein, S., Currat, M. & Excoffier, L. The fate of mutations surfing on the wave of a range expansion. Mol. Biol. Evol. 23, 482–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Novellie, P. Equus zebra ssp. zebra. IUCN Red List of Threatened Species 2008: e.T7959A12876612(IUCN, accessed 10 September 2017); http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T7959A12876612.en.

Download references

Acknowledgements

The authors thank A. al-Cher for laboratory work in connection with this study. The work was funded by research grants from the The Danish Council for Independent Research | Natural Sciences, the Lundbeck Foundation and the Villum Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.-E.T.P and R.H. designed and performed the experiments, analysed the data and wrote the paper. A.A. developed the analytical tools and analysed the data. H.R.S., P.D.E., E.A.J., L.O. and L.C. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Casper-Emil T. Pedersen or Rasmus Heller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures, tables and references.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, CE.T., Albrechtsen, A., Etter, P.D. et al. A southern African origin and cryptic structure in the highly mobile plains zebra. Nat Ecol Evol 2, 491–498 (2018). https://doi.org/10.1038/s41559-017-0453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0453-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing