The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity

A Publisher Correction to this article was published on 13 February 2018

This article has been updated

Abstract

Understanding the mechanisms by which the abiotic and biotic requirements of species, or ecological niches, change over time is a central issue in evolutionary biology. Niche evolution is poorly understood at both the macroecological and macroevolutionary scales, as niches can shift over short periods of time but appear to change more slowly over longer timescales. Although reconstructing past niches has always been a major concern for palaeontologists and evolutionary biologists, only a few recent studies have successfully determined the factors that affect niche evolution. Here, we compare the evolution of climatic niches in four main groups of terrestrial vertebrates using a modelling approach integrating both palaeontological and neontological data, and large-scale datasets that contain information on the current distributions, phylogenetic relationships and fossil records for a total of 11,465 species. By reconstructing historical shifts in geographical ranges and climatic niches, we show that niche shifts are significantly faster in endotherms (birds and mammals) than in ectotherms (squamates and amphibians). We further demonstrate that the diversity patterns of the four clades are directly affected by the rate of niche evolution, with fewer latitudinal shifts in ectotherms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The rate of niche evolution in endotherms (birds and mammals, red) and ectotherms (squamates and amphibians, blue).
Fig. 2: Construction of the latitudinal diversity gradient over time between birds and mammals (endotherms) and amphibians and squamates (ectotherms).
Fig. 3: The evolution of the global temperature of the Earth over the last 145 Myr and the main directions of the latitudinal dispersal (towards the poles or the Equator) of the four groups as a function of latitude.

Change history

  • 13 February 2018

    In the version of this Article originally published, in Fig. 3a the first boundary was incorrectly labelled the “K/T boundary”; it should have read the “K/Pg boundary”. The two equations in the main text were incorrectly omitted from the HTML. In the description of the posterior distribution of an ancestral state, the normal distribution was incorrectly described as being “assigned as prior to the node value”; it should have read “assigned as calibration to the node value”. In the associated equation (the second equation in the text), the denominator of the last term was incorrectly given as “Node prior”; it should have read “Node calibration”. In the same equation, the numerator of the third term on the right-hand side of the equation contained incorrect superscript notation on the x and this is shown in the full equation in the notice below.

References

  1. 1.

    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).

    Article  PubMed  Google Scholar 

  2. 2.

    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    Article  Google Scholar 

  3. 3.

    Crisp, M. D. et al. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Prinzing, A., Durka, W., Klotz, S. & Brandl, R. The niche of higher plants: evidence for phylogenetic conservatism. Proc. R Soc. Lond. B 268, 2383–2389 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Svenning, J. C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).

    Article  PubMed  Google Scholar 

  6. 6.

    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    Article  PubMed  Google Scholar 

  7. 7.

    Quintero, I. & Wiens, J. J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103 (2013).

    Article  PubMed  Google Scholar 

  8. 8.

    Chaboureau, A. C., Sepulchre, P., Donnadieu, Y. & Franc, A. Tectonic-driven climate change and the diversification of angiosperms. Proc. Natl. Acad. Sci. USA 111, 14066–14070 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kostikova, A., Litsios, G., Salamin, N. & Pearman, P. B. Linking life-history traits, ecology, and niche breadth evolution in North American eriogonoids (Polygonaceae). Am. Nat. 182, 760–774 (2013).

    Article  PubMed  Google Scholar 

  10. 10.

    Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. B 283, 20162104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kozak, K. & Wiens, J. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378–1389 (2010).

    Article  PubMed  Google Scholar 

  12. 12.

    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–12119 (2013).

    Article  PubMed  Google Scholar 

  13. 13.

    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105, 6668–6672 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Farmer, C. G. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 155, 326–334 (2000).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Angiletta, M. J. Thermal Adaptation: A Theoretical and Empirical Analysis. (Oxford Univ. Press,New York, 2009).

    Google Scholar 

  17. 17.

    Crompton, A. W., Taylor, C. R. & Jagger, J. A. Evolution of homeothermy in mammals. Nature 272, 333–336 (1978).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Rolland, J. & Salamin, N. Niche width impacts vertebrate diversification. Glob. Ecol. Biogeogr. 25, 1252–1263 (2016).

    Article  Google Scholar 

  19. 19.

    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Cramer, B. S., Toggweiler, J. R., Wright, M. E., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216 (2009).

    Article  Google Scholar 

  21. 21.

    Prokoph, A., Shields, G. A. & Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci. Rev. 87, 113–133 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).

    Article  PubMed  Google Scholar 

  24. 24.

    Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).

    Article  PubMed  Google Scholar 

  25. 25.

    Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).

    Article  PubMed  Google Scholar 

  26. 26.

    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. USA 97, 9115–9120 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ge, D. et al. Evolutionary history of lagomorphs in response to global environmental change. PLoS. ONE 8, e59668 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Rolland, J., Condamine, F. L., Beeravolu, C. R., Jiguet, F. & Morlon, H. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora. Glob. Ecol. Biogeogr. 24, 1059–1071 (2015).

    Article  Google Scholar 

  29. 29.

    Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).

    Article  Google Scholar 

  30. 30.

    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Duchêne, D. A. & Cardillo, M. Phylogenetic patterns in the geographic distributions of birds support the tropical conservatism hypothesis. Glob. Ecol. Biogeogr. 24, 1261–1268 (2015).

    Article  Google Scholar 

  32. 32.

    Pyron, R. A. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R Soc. B 280, 20131622 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Pyron, R. A. Temperate extinction in squamate reptiles and the roots of latitudinal diversity gradients. Glob. Ecol. Biogeogr. 23, 1126–1134 (2014).

    Article  Google Scholar 

  34. 34.

    Wake, D. B. & Vredenburg, V. T. Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. USA 105, 11466–11473 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article  Google Scholar 

  36. 36.

    Bininda-Emonds, O. R. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

    Article  PubMed  Google Scholar 

  38. 38.

    Kuhn, T. S., Mooers, A. Ø. & Thomas, G. H. A simple polytomy resolver for dated phylogenies. Methods Ecol. Evol. 2, 427–436 (2011).

    Article  Google Scholar 

  39. 39.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Pyron, R. A. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Biol. Evol. 61, 543–583 (2011).

    Google Scholar 

  41. 41.

    Pyron, R. A. & Burbrink, F. T. Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecol. Lett. 17, 13–21 (2014).

    Article  PubMed  Google Scholar 

  42. 42.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  44. 44.

    Wright, N., ahirovic, S., Müller, R. D. & Seton, M. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics. Biogeosciences 10, 1529–1541 (2013).

    Article  Google Scholar 

  45. 45.

    Slater, G. J., Harmon, L. J. & Alfaro, M. E. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66, 3931–3944 (2012).

    Article  PubMed  Google Scholar 

  46. 46.

    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. W. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    CAS  Article  Google Scholar 

  47. 47.

    Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

    Article  Google Scholar 

  48. 48.

    Gelman, A., CarlinJ. B., Stern, J. B. & Rubin, D. B. Bayesian Data Analysis 2. (Chapman & Hall/CRC, London, 2014).

    Google Scholar 

  49. 49.

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v.1.6 http://tree.bio.ed.ac.uk/software/tracer/ (2014).

  50. 50.

    Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).

    Article  Google Scholar 

  51. 51.

    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Vital-IT facilities of the Swiss Institute of Bioinformatics for the computational support. J.R. received a Banting postdoctoral fellowship at university of British Columbia. D. Silvestro received funding from the Swedish Research Council (2015-04748) and from the Knut and Alice Wallenberg foundation. This work was funded by the University of Lausanne and the Swiss National Science Foundation (CRSIII3-147630) to N.S.

Author information

Affiliations

Authors

Contributions

J.R., D.S. and N.S. designed the study and the methodology. J.R. wrote the first version of the manuscript and all co-authors contributed to the writing or commented the final version of the manuscript.

Corresponding author

Correspondence to Jonathan Rolland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41559-018-0492-8.

Supplementary information

Supplementary Information

Supplementary Methods and Results, Supplementary References, Supplementary Figures 1–11, Supplementary Tables 1–4.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rolland, J., Silvestro, D., Schluter, D. et al. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat Ecol Evol 2, 459–464 (2018). https://doi.org/10.1038/s41559-017-0451-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing