Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis

Abstract

The Ediacara biota (~575–541 million years ago) mark the emergence of large, complex organisms in the palaeontological record, preluding the radiation of modern animal phyla. However, their phylogenetic relationships, even at the domain level, remain controversial. We report the discovery of molecular fossils from organically preserved specimens of Beltanelliformis, demonstrating that they represent large spherical colonies of cyanobacteria. The conservation of molecular remains in organically preserved Ediacaran organisms opens a new path for unravelling the natures of the Ediacara biota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of steranes, hopanes and n-alkanes in the extracts of a macroalgal film and Beltanelliformis.

Similar content being viewed by others

References

  1. Narbonne, G. M. & Hofmann, H. J. Palaeontology 30, 647–676 (1987).

    Google Scholar 

  2. Zaika Novatsky, V. & Palij, V. Paleontol. Sb. 11, 59–65 (1974).

    Google Scholar 

  3. Seilacher, A. J. Geol. Soc. 149, 607–613 (1992).

    Article  Google Scholar 

  4. Leonov, M. V. Geol. Soc. Spec. Publ. 286, 259–267 (2007).

    Article  Google Scholar 

  5. Gnilovskaya, M. B., Ishchenko, A. A., Kolesnikov, Ch. M., Korenchuk, L. V. & Udal'tsov, A. P. Vendotenidy Vostochno-Evropejskoj Platformy (Nauka, Leningrad, 1988).

  6. Aseeva, E. A. in Biostratigraphy and Paleogeographic Reconstructions of the Precambrian of Ukraine (eds Ryabenko, V. A., Aseeva, E. A. & Furtes, V. V.) 81–92 (Naukova Dumka, Kiev, 1988).

  7. Runnegar, B. & Fedonkin, M. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 369–388 (Cambridge Univ. Press, Cambridge, 1992).

  8. Steiner, M. & Reitner, J. Geology 29, 1119–1122 (2001).

    Article  Google Scholar 

  9. Steiner, M. Acta Univ. Carol. Geol. 40, 645–665 (1996).

    Google Scholar 

  10. Ivantsov, A. Y., Gritsenko, V. P., Konstantinenko, L. I. & Zakrevskaya, M. A. Paleontol. J. 48, 1415–1440 (2014).

    Article  Google Scholar 

  11. Xiao, S. & Dong, L. in Neoproterozoic Geobiology and Paleobiology (eds Xiao, S. & Kaufman, A. J.) 57–90 (Springer Netherlands, Dordrecht, 2006).

  12. Xiao, S., Yuan, X., Steiner, M. & Knoll, A. H. J. Paleontol. 76, 347–376 (2002).

    Article  Google Scholar 

  13. Grazhdankin, D. Stratigr. Geol. Correl. 11, 313–331 (2003).

    Google Scholar 

  14. Kodner, R. B., Pearson, A., Summons, R. E. & Knoll, A. H. Geobiology 6, 411–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Alexander, R., Berwick, L. & Pierce, K. Org. Geochem. 42, 540–547 (2011).

    Article  CAS  Google Scholar 

  16. Volkman, J. K. et al. Org. Geochem. 29, 1163–1179 (1998).

    Article  CAS  Google Scholar 

  17. Allard, B. & Templier, J. Phytochemistry 57, 459–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Shaw, D. G. & Wiggs, J. N. Phytochemistry 18, 2025–2027 (1979).

    Article  CAS  Google Scholar 

  19. Versteegh, G. J. M. & Blokker, P. Phycol. Res. 52, 325–339 (2004).

    Article  CAS  Google Scholar 

  20. Ricci, J. N., Morton, R., Kulkarni, G., Summers, M. L. & Newman, D. K. Geobiology 15, 173–183 (2016).

    Article  PubMed  Google Scholar 

  21. Blumenberg, M. et al. Environ. Microbiol. 8, 1220–1227 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Nagovitsyn, A. in PALEOSTRAT-2015 (ed Alekseev, A. S.) 57–58 (PIN RAS, Moscow, 2015).

  23. Jones, J. G. Microbiology 59, 145–152 (1969).

    CAS  Google Scholar 

  24. Gelpi, E., Oró, J., Schneider, H. J. & Bennett, E. O. Science 161, 700–701 (1968).

    Article  CAS  PubMed  Google Scholar 

  25. Matsumoto, G. I., Yamada, S., Ohtani, S., Broady, P. A. & Nagashima, H. Proc. NIPR Symp. Polar Biol. 9, 275–282 (1996).

    Google Scholar 

  26. Schouten, S. et al. Geochim. Cosmochim. Acta 62, 1397–1406 (1998).

    Article  CAS  Google Scholar 

  27. Xiao, S. & Laflamme, M. Trends Ecol. Evol. 24, 31–40 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Australian Research Council grants DP160100607 and DP170100556 (to J.J.B.). I.B. gratefully acknowledges an Australian Research Council Research Training Program scholarship. The authors are grateful to E. Luzhnaya, A. Nagovitsyn, M. Luzhnaya, P. Rychkov and V. Rychkov for help in the field, L. Zaytseva and E. Luzhnaya for scanning electron microscope imaging of organic matter, and J. K. Volkman, S. Xiao, N. J. Butterfield and R. E. Summons for helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

I.B. conceived the study and performed the analyses. I.B. and A.K. collected the samples. J.M.H. helped with the methodology. A.I. provided palaeontological advice. I.B. and J.J.B. interpreted the results and wrote the paper.

Corresponding author

Correspondence to Jochen J. Brocks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, information, references and figures

Life Sciences Reporting Summary

Supplementary Dataset

A numerical computation of the percentage of hopanes in the Beltanelliformis extract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovskiy, I., Hope, J.M., Krasnova, A. et al. Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis. Nat Ecol Evol 2, 437–440 (2018). https://doi.org/10.1038/s41559-017-0438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0438-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing