Article | Published:

A global perspective on the trophic geography of sharks

Nature Ecology & Evolutionvolume 2pages299305 (2018) | Download Citation


Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Ebert, D. A., Fowler, S. L., Compagno, L. J. & Dando, M. Sharks of the World: A Fully Illustrated Guide (Wild Nature Press, Plymouth, 2013).

  2. 2.

    Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R. & Lotze, H. K. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).

  3. 3.

    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).

  4. 4.

    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, 1–34 (2014).

  5. 5.

    Kitchell, J. F., Essington, T. E., Boggs, C. H., Schindler, D. E. & Walters, C. J. The role of sharks and longline fisheries in a pelagic ecosystem of the central Pacific. Ecosystems 5, 202–216 (2002).

  6. 6.

    Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).

  7. 7.

    Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23, 202–210 (2008).

  8. 8.

    Heupel, M. R., Knip, D. M., Simpfendorfer, C. A. & Dulvy, N. K. Sizing up the ecological role of sharks as predators. Mar. Ecol. Prog. Ser. 495, 291–298 (2014).

  9. 9.

    Grubbs, R. D. et al. Critical assessment and ramifications of a purported marine trophic cascade. Sci. Rep. 6, 20970 (2016).

  10. 10.

    Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31, 395–407 (2016).

  11. 11.

    Ruppert, J. L., Fortin, M.-J. & Meekan, M. G. The ecological role of sharks on coral reefs: Response to Roff et al. Trends Ecol. Evol. 8, 586–587 (2016).

  12. 12.

    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

  13. 13.

    Fry, B. & Sherr, E. B. in Stable Isotopes in Ecological Research (eds Rundel, P. W., Ehleringer, J. R. & Nagy, K. A.) 196–229 (Springer, New York, 1989).

  14. 14.

    Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131–1138 (1995).

  15. 15.

    McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).

  16. 16.

    Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120, 314–326 (1999).

  17. 17.

    Magozzi, S., Yool, A., Vander Zanden, H. B., Wunder, M. B. & Trueman, C. N. Using ocean models to predict spatial and temporal variation in marine carbon isotopes. Ecosphere 8, e01763 (2017).

  18. 18.

    Cortés, E. Standardized diet compositions and trophic levels of sharks. ICES J. Mar. Sci. 56, 707–717 (1999).

  19. 19.

    Trueman, C. N., Johnston, G., O’Hea, B. & MacKenzie, K. M. Trophic interactions of fish communities at midwater depths enhance long-term carbon storage and benthic production on continental slopes. Proc. R. Soc. B 281, 20140669 (2014).

  20. 20.

    Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22 (2016).

  21. 21.

    Kim, S. L., del Rio, C. M., Casper, D. & Koch, P. L. Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J. Exp. Biol. 215, 2495–2500 (2012).

  22. 22.

    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).

  23. 23.

    Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P. & Hueter, R. E. There and back again: a review of residency and return migrations in sharks, with implications for population structure and management. Annu. Rev. Mar. Sci. 7, 547–570 (2015).

  24. 24.

    Lea, J. S. et al. Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems. Sci. Rep. 5, p11202 (2015).

  25. 25.

    Camhi, M. D., Pikitch, E. K. & Babcock, E. A. (eds) Sharks of the Open Ocean: Biology, Fisheries and Conservation (Blackwell, Oxford, 2008).

  26. 26.

    Ichii, T., Mahapatra, K., Sakai, M. & Okada, Y. Life history of the neon flying squid: effect of the oceanographic regime in the North Pacific Ocean. Mar. Ecol. Prog. Ser. 378, 1–11 (2009).

  27. 27.

    Scales, K. L. et al. On the front line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates. J. Appl. Ecol. 51, 1575–1583 (2014).

  28. 28.

    Queiroz, N. et al. Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots. Proc. Natl Acad. Sci. USA 113, 1582–1587 (2016).

  29. 29.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

  30. 30.

    Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).

  31. 31.

    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Chang. 3, 234–238 (2013).

  32. 32.

    Campana, S. E. et al. Migration pathways, behavioural thermoregulation and overwintering grounds of blue sharks in the northwest Atlantic. PLoS ONE 6, e16854 (2011).

  33. 33.

    Compagno, L. J. Sharks of the World: An Annotated and Illustrated Catalogue of Shark Species Known to Date Vol. 2 (Food & Agriculture Organization, Rome, 2001).

  34. 34.

    Moura, T. et al. Large-scale distribution of three deep-water squaloid sharks: integrating data on sex, maturity and environment. Fish. Res. 157, 47–61 (2014).

  35. 35.

    Veríssimo, A., McDowell, J. R. & Graves, J. E. Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis). ICES J. Mar. Sci. 68, 555–563 (2011).

  36. 36.

    Rodríguez-Cabello, C., González-Pola, C. & Sánchez, F. Migration and diving behavior of Centrophorus squamosus in the NE Atlantic. Combining electronic tagging and Argo hydrography to infer deep ocean trajectories. Deep-Sea Res. 115, 48–62 (2016).

  37. 37.

    Heupel, M. & Simpfendorfer, C. Importance of environmental and biological drivers in the presence and space use of a reef-associated shark. Mar. Ecol. Prog. Ser. 496, 47–57 (2014).

  38. 38.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

  39. 39.

    Heupel, M. R. et al. Conservation challenges of sharks with continental scale migrations. Front. Mar. Sci. 2, 12 (2015).

  40. 40.

    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).

  41. 41.

    Borrell, A., Aguilar, A., Gazo, M., Kumarran, R. P. & Cardona, L. Stable isotope profiles in whale shark (Rhincodon typus) suggest segregation and dissimilarities in the diet depending on sex and size. Environ. Biol. Fishes 92, 559–567 (2011).

  42. 42.

    Hussey, N. E. et al. Expanded trophic complexity among large sharks. Food Webs 4, 1–7 (2015).

  43. 43.

    Maljković, A. & Côté, I. M. Effects of tourism-related provisioning on the trophic signatures and movement patterns of an apex predator, the Caribbean reef shark. Biol. Conserv. 144, 859–865 (2011).

  44. 44.

    Matich, P., Heithaus, M. R. & Layman, C. A. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80, 294–305 (2011).

  45. 45.

    Kiljunen, M. et al. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J. Appl. Ecol. 43, 1213–1222 (2006).

Download references


This research was conducted as part of C.S.B.’s Ph.D dissertation, which was funded by the University of Southampton and NERC (NE/L50161X/1), and through a NERC Grant-in-Kind from the Life Sciences Mass Spectrometry Facility (LSMSF; EK267-03/16). We thank A. Bates, D. Sims, F. Neat, R. McGill and J. Newton for their analytical contributions and comments on the manuscripts.

Author information

Author notes

    • Christopher S. Bird

    Present address: Centre for Environment, Fisheries, & Aquaculture Sciences (CEFAS), Lowestoft, UK

    • Dana M. Bethea

    Present address: NOAA National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, FL, USA

    • Dean L. Courtney

    Present address: National Oceanic and Atmospheric Administration, Southeast Fisheries Science Center, Panama City Laboratory, Delwood Beach Road, Panama City, FL, USA


  1. Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK

    • Christopher S. Bird
    • , Sarah Magozzi
    • , Katie Quaeck-Davies
    •  & Clive N. Trueman
  2. CIBIO—Research Center in Biodiversity and Genetic Resources, Vairão, Portugal

    • Ana Veríssimo
  3. Virginia Institute of Marine Science, Gloucester Point, VA, USA

    • Ana Veríssimo
  4. College of Science & Engineering, James Cook University, Cairns, Queensland, Australia

    • Kátya G. Abrantes
    •  & Adam Barnett
  5. IRBio, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain

    • Alex Aguilar
    •  & Asuncion Borrell
  6. Department of Biology, College of Science, Sultan Qaboos Univeristy, Muscat, Oman

    • Hassan Al-Reasi
  7. NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Road, Panama City, FL, USA

    • Dana M. Bethea
  8. Ifremer, Unité Halieutique Gascogne Sud, Laboratoire Ressources Halieutiques de La Rochelle, L’Houmeau, France

    • Gérard Biais
  9. Ifremer, Unité Littoral, Laboratoire Environnement Ressources Provence Azur Corse, La Seyne sur Mer, France

    • Marc Bouchoucha
  10. FishWise, Santa Cruz, CA, USA

    • Mariah Boyle
  11. Shark Research and Conservation Program, Cape Eleuthera Institute, Eleuthera, Bahamas

    • Edward J. Brooks
  12. Gladbachstrasse 60, Zurich, Switzerland

    • Juerg Brunnschweiler
  13. Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France

    • Paco Bustamante
  14. Hopkins Marine Station of Stanford University, Pacific Grove, CA, USA

    • Aaron Carlisle
  15. MARE—Marine and Environmental Sciences Centre, Department of Oceanography and Fisheries, University of the Azores, Azores, Portugal

    • Diana Catarino
    • , Ana Colaço
    •  & Gui M. Menezes
  16. Estación Biológica de Doñana, Consejo Superior de Investigationes Científicas (CSIC), Sevilla, Spain

    • Stéphane Caut
  17. Centre d’Etudes Biologiques de Chizé, UMR 7372, CNRS-Université de La Rochelle, Villiers-en-Bois, France

    • Yves Cherel
  18. Unité Biogéochimie et Écotoxicologie, Laboratoire de Biogéochimie des Contaminants Métalliques, Nantes, France

    • Tiphaine Chouvelon
  19. Marine Sciences Program, School of Environment, Arts and Society, Florida International University, North Miami, FL, USA

    • Diana Churchill
  20. CESIMAR Centro Nacional Patagónico, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Puerto Madryn, Chubut, Argentina

    • Javier Ciancio
  21. Laboratoire de Biologie Marine, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

    • Julien Claes
  22. College of Fisheries and Ocean Sciences, Juneau Center, University of Alaska Fairbanks, Point Lena Loop Road, Juneau, AK, USA

    • Dean L. Courtney
  23. Ifremer, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques de Boulogne, Boulogne-sur-Mer, France

    • Pierre Cresson
  24. Port Elizabeth Museum at Bayworld, Port Elizabeth, South Africa

    • Ryan Daly
  25. Save Our Seas Foundation—D’Arros Research Centre (SOSF-DRC), Geneva, Switzerland

    • Ryan Daly
  26. University of Cape Town, Department of Biological Sciences, Cape Town, South Africa

    • Leigh de Necker
  27. School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan

    • Tetsuya Endo
  28. Departamento do Mar IPMA, Lisbon, Portugal

    • Ivone Figueiredo
  29. Reef HQ, Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia

    • Ashley J. Frisch
  30. Aquatic Biology, Department of Bioscience, Aarhus University, Aarhus C, Denmark

    • Joan Holst Hansen
  31. School of Environment, Arts, and Society, Florida International University, North Miami, FL, USA

    • Michael Heithaus
  32. Biological Sciences, University of Windsor, Windsor, Canada

    • Nigel E. Hussey
  33. Department of Fisheries and Aquatic Sciences, University of Namibia, Henties Bay, Namibia

    • Johannes Iitembu
  34. Department of Biology, University of Victoria, Victoria, British Columbia, Canada

    • Francis Juanes
  35. Ocean Associates, Inc., Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA

    • Michael J. Kinney
  36. Marine Sciences Program, Department of Biological Sciences, Florida International University, North Miami, FL, USA

    • Jeremy J. Kiszka
  37. Centro de Investigacion para la Sustentabilidad, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Santiago, Chile

    • Sebastian A. Klarian
  38. Ifremer, Unité Sciences et Techniques Halieutiques, Laboratoire de Technologie et Biologie Halieutique, Lorient, France

    • Dorothée Kopp
  39. Division of Coastal Sciences, University of Southern Mississippi, Ocean Springs, MS, USA

    • Robert Leaf
  40. College of Marine Sciences, Shanghai Ocean University, Shanghai, China

    • Yunkai Li
  41. Institut de Recherche pour le Développement (IRD), R 195 LEMAR, UMR 6539 (UBO, CNRS, IRD, IFREMER), Nouméa, New Caledonia

    • Anne Lorrain
  42. Harvard University Center for the Environment, Harvard University, Cambridge, MA, USA

    • Daniel J. Madigan
  43. Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada

    • Aleksandra Maljković
  44. Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada

    • Luis Malpica-Cruz
  45. Marine Sciences Program, Florida International University, North Miami, FL, USA

    • Philip Matich
  46. Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX, USA

    • Philip Matich
  47. Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia, Perth, Western Australia, Australia

    • Mark G. Meekan
    •  & Conrad W. Speed
  48. Mediterranean Istitute of Oceanography (MIO), Aix Marseille Université, Université de Toulon, CNRS, IRD, 13288 Marseille, France

    • Frédéric Ménard
  49. Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia

    • Samantha E. M. Munroe
  50. Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA, USA

    • Michael C. Newman
  51. Department of Biological Sciences, Florida International University, North Miami, FL, USA

    • Yannis P. Papastamatiou
  52. Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, UK

    • Yannis P. Papastamatiou
  53. CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

    • Heidi Pethybridge
  54. Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA

    • Jeffrey D. Plumlee
    •  & R. J. David Wells
  55. Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA

    • Jeffrey D. Plumlee
    •  & R. J. David Wells
  56. Facultad de Ciencias Naturales e Ingeniería, Programa de Biología, Universidad de Bogotá Jorge Tadeo Lozano Marina, Bogotá, Colombia

    • Carlos Polo-Silva
  57. Department of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia

    • Vincent Raoult
  58. Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA

    • Jonathan Reum
  59. Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche (UAC), Campeche, Campeche, Mexico

    • Yassir Eden Torres-Rojas
  60. Earth to Oceans Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada

    • David S. Shiffman
  61. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA

    • Oliver N. Shipley
  62. Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA

    • Michelle D. Staudinger
  63. Department of the Interior Northeast Climate Science Center, Amherst, MA, USA

    • Michelle D. Staudinger
  64. Department of Biology, University of Victoria, Victoria, British Columbia, Canada

    • Amy K. Teffer
  65. WorldFish Timor-Leste, Dili, Timor-Leste

    • Alexander Tilley
  66. Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Palma, Spain

    • Maria Valls
  67. The Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, FL, USA

    • Jeremy J. Vaudo
  68. State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China

    • Tak-Cheung Wai
  69. Department of Chemical Oceanography, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan

    • Alex S. J. Wyatt
  70. National Oceanography Centre Southampton, Southampton, UK

    • Andrew Yool


  1. Search for Christopher S. Bird in:

  2. Search for Ana Veríssimo in:

  3. Search for Sarah Magozzi in:

  4. Search for Kátya G. Abrantes in:

  5. Search for Alex Aguilar in:

  6. Search for Hassan Al-Reasi in:

  7. Search for Adam Barnett in:

  8. Search for Dana M. Bethea in:

  9. Search for Gérard Biais in:

  10. Search for Asuncion Borrell in:

  11. Search for Marc Bouchoucha in:

  12. Search for Mariah Boyle in:

  13. Search for Edward J. Brooks in:

  14. Search for Juerg Brunnschweiler in:

  15. Search for Paco Bustamante in:

  16. Search for Aaron Carlisle in:

  17. Search for Diana Catarino in:

  18. Search for Stéphane Caut in:

  19. Search for Yves Cherel in:

  20. Search for Tiphaine Chouvelon in:

  21. Search for Diana Churchill in:

  22. Search for Javier Ciancio in:

  23. Search for Julien Claes in:

  24. Search for Ana Colaço in:

  25. Search for Dean L. Courtney in:

  26. Search for Pierre Cresson in:

  27. Search for Ryan Daly in:

  28. Search for Leigh de Necker in:

  29. Search for Tetsuya Endo in:

  30. Search for Ivone Figueiredo in:

  31. Search for Ashley J. Frisch in:

  32. Search for Joan Holst Hansen in:

  33. Search for Michael Heithaus in:

  34. Search for Nigel E. Hussey in:

  35. Search for Johannes Iitembu in:

  36. Search for Francis Juanes in:

  37. Search for Michael J. Kinney in:

  38. Search for Jeremy J. Kiszka in:

  39. Search for Sebastian A. Klarian in:

  40. Search for Dorothée Kopp in:

  41. Search for Robert Leaf in:

  42. Search for Yunkai Li in:

  43. Search for Anne Lorrain in:

  44. Search for Daniel J. Madigan in:

  45. Search for Aleksandra Maljković in:

  46. Search for Luis Malpica-Cruz in:

  47. Search for Philip Matich in:

  48. Search for Mark G. Meekan in:

  49. Search for Frédéric Ménard in:

  50. Search for Gui M. Menezes in:

  51. Search for Samantha E. M. Munroe in:

  52. Search for Michael C. Newman in:

  53. Search for Yannis P. Papastamatiou in:

  54. Search for Heidi Pethybridge in:

  55. Search for Jeffrey D. Plumlee in:

  56. Search for Carlos Polo-Silva in:

  57. Search for Katie Quaeck-Davies in:

  58. Search for Vincent Raoult in:

  59. Search for Jonathan Reum in:

  60. Search for Yassir Eden Torres-Rojas in:

  61. Search for David S. Shiffman in:

  62. Search for Oliver N. Shipley in:

  63. Search for Conrad W. Speed in:

  64. Search for Michelle D. Staudinger in:

  65. Search for Amy K. Teffer in:

  66. Search for Alexander Tilley in:

  67. Search for Maria Valls in:

  68. Search for Jeremy J. Vaudo in:

  69. Search for Tak-Cheung Wai in:

  70. Search for R. J. David Wells in:

  71. Search for Alex S. J. Wyatt in:

  72. Search for Andrew Yool in:

  73. Search for Clive N. Trueman in:


C.S.B. and C.N.T. contributed the concept and design. C.S.B., C.N.T. and A.V. led the project. C.S.B. and C.N.T. wrote the manuscript. C.S.B., C.N.T., S.M. and A.Y analysed and interpreted the data. C.S.B., C.N.T., A.V., K.G.A., A.A., H.A.-R., A.B., D.M.B., G.B., A.B., M. Bouchoucha, M. Boyle, E.J.B., J.B., P.B., A.C., D.C., J. Ciancio, J. Claes, A.C., D.C., P.C., R.D., L.d.N., T.E., I.F., A.J.F., J.H.H., M.H., N.E.H., J.I., F.J., M.J.K., J.J.K., D.K., R.L., Y.L., S.A.K., A.L., D.M., A.M., L.M.-C., P.M., M.M., F.M., G.M.M., S.M., M.N., Y.P., H.P., J.D.P., C.P.-S., K.Q.-D., V.R., J.R., Y.E.T.-R., D.S.S., O.N.S., C.W.S., M.S., A. Teffer, A. Tilley, M.V., J.J.V., T-C.W., R.J.D.W. and A.S.J.W. provided data and/or samples. All authors have read, provided comments and approved the final manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Christopher S. Bird or Clive N. Trueman.

Supplementary information

  1. Supplementary Information

    Supplementary tables, figures and references.

  2. Life Sciences Reporting Summary

  3. Supplementary Data

    Supplementary table 1.

About this article

Publication history




Issue Date


Further reading