A global perspective on the trophic geography of sharks


Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Distribution of compiled shark data overlaid on a spatial model of annual average biomass weighted δ13CP within Longhurst biogeographic provinces from the median sampling year (2009).
Fig. 2: Carbon isotope data.


  1. 1.

    Ebert, D. A., Fowler, S. L., Compagno, L. J. & Dando, M. Sharks of the World: A Fully Illustrated Guide (Wild Nature Press, Plymouth, 2013).

  2. 2.

    Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R. & Lotze, H. K. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).

    PubMed  Google Scholar 

  3. 3.

    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).

    Article  Google Scholar 

  4. 4.

    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, 1–34 (2014).

    Article  Google Scholar 

  5. 5.

    Kitchell, J. F., Essington, T. E., Boggs, C. H., Schindler, D. E. & Walters, C. J. The role of sharks and longline fisheries in a pelagic ecosystem of the central Pacific. Ecosystems 5, 202–216 (2002).

    Article  Google Scholar 

  6. 6.

    Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23, 202–210 (2008).

    Article  PubMed  Google Scholar 

  8. 8.

    Heupel, M. R., Knip, D. M., Simpfendorfer, C. A. & Dulvy, N. K. Sizing up the ecological role of sharks as predators. Mar. Ecol. Prog. Ser. 495, 291–298 (2014).

    Article  Google Scholar 

  9. 9.

    Grubbs, R. D. et al. Critical assessment and ramifications of a purported marine trophic cascade. Sci. Rep. 6, 20970 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31, 395–407 (2016).

    Article  PubMed  Google Scholar 

  11. 11.

    Ruppert, J. L., Fortin, M.-J. & Meekan, M. G. The ecological role of sharks on coral reefs: Response to Roff et al. Trends Ecol. Evol. 8, 586–587 (2016).

    Article  Google Scholar 

  12. 12.

    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    Fry, B. & Sherr, E. B. in Stable Isotopes in Ecological Research (eds Rundel, P. W., Ehleringer, J. R. & Nagy, K. A.) 196–229 (Springer, New York, 1989).

  14. 14.

    Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131–1138 (1995).

    CAS  Article  Google Scholar 

  15. 15.

    McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120, 314–326 (1999).

    Article  PubMed  Google Scholar 

  17. 17.

    Magozzi, S., Yool, A., Vander Zanden, H. B., Wunder, M. B. & Trueman, C. N. Using ocean models to predict spatial and temporal variation in marine carbon isotopes. Ecosphere 8, e01763 (2017).

    Article  Google Scholar 

  18. 18.

    Cortés, E. Standardized diet compositions and trophic levels of sharks. ICES J. Mar. Sci. 56, 707–717 (1999).

    Article  Google Scholar 

  19. 19.

    Trueman, C. N., Johnston, G., O’Hea, B. & MacKenzie, K. M. Trophic interactions of fish communities at midwater depths enhance long-term carbon storage and benthic production on continental slopes. Proc. R. Soc. B 281, 20140669 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22 (2016).

    Article  Google Scholar 

  21. 21.

    Kim, S. L., del Rio, C. M., Casper, D. & Koch, P. L. Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J. Exp. Biol. 215, 2495–2500 (2012).

    Article  PubMed  Google Scholar 

  22. 22.

    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).

    Article  PubMed  Google Scholar 

  23. 23.

    Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P. & Hueter, R. E. There and back again: a review of residency and return migrations in sharks, with implications for population structure and management. Annu. Rev. Mar. Sci. 7, 547–570 (2015).

    Article  Google Scholar 

  24. 24.

    Lea, J. S. et al. Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems. Sci. Rep. 5, p11202 (2015).

    Article  Google Scholar 

  25. 25.

    Camhi, M. D., Pikitch, E. K. & Babcock, E. A. (eds) Sharks of the Open Ocean: Biology, Fisheries and Conservation (Blackwell, Oxford, 2008).

  26. 26.

    Ichii, T., Mahapatra, K., Sakai, M. & Okada, Y. Life history of the neon flying squid: effect of the oceanographic regime in the North Pacific Ocean. Mar. Ecol. Prog. Ser. 378, 1–11 (2009).

    Article  Google Scholar 

  27. 27.

    Scales, K. L. et al. On the front line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates. J. Appl. Ecol. 51, 1575–1583 (2014).

    Article  Google Scholar 

  28. 28.

    Queiroz, N. et al. Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots. Proc. Natl Acad. Sci. USA 113, 1582–1587 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Chang. 3, 234–238 (2013).

    Article  Google Scholar 

  32. 32.

    Campana, S. E. et al. Migration pathways, behavioural thermoregulation and overwintering grounds of blue sharks in the northwest Atlantic. PLoS ONE 6, e16854 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Compagno, L. J. Sharks of the World: An Annotated and Illustrated Catalogue of Shark Species Known to Date Vol. 2 (Food & Agriculture Organization, Rome, 2001).

  34. 34.

    Moura, T. et al. Large-scale distribution of three deep-water squaloid sharks: integrating data on sex, maturity and environment. Fish. Res. 157, 47–61 (2014).

    Article  Google Scholar 

  35. 35.

    Veríssimo, A., McDowell, J. R. & Graves, J. E. Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis). ICES J. Mar. Sci. 68, 555–563 (2011).

    Article  Google Scholar 

  36. 36.

    Rodríguez-Cabello, C., González-Pola, C. & Sánchez, F. Migration and diving behavior of Centrophorus squamosus in the NE Atlantic. Combining electronic tagging and Argo hydrography to infer deep ocean trajectories. Deep-Sea Res. 115, 48–62 (2016).

    Article  Google Scholar 

  37. 37.

    Heupel, M. & Simpfendorfer, C. Importance of environmental and biological drivers in the presence and space use of a reef-associated shark. Mar. Ecol. Prog. Ser. 496, 47–57 (2014).

    Article  Google Scholar 

  38. 38.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Heupel, M. R. et al. Conservation challenges of sharks with continental scale migrations. Front. Mar. Sci. 2, 12 (2015).

    Article  Google Scholar 

  40. 40.

    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).

    Article  Google Scholar 

  41. 41.

    Borrell, A., Aguilar, A., Gazo, M., Kumarran, R. P. & Cardona, L. Stable isotope profiles in whale shark (Rhincodon typus) suggest segregation and dissimilarities in the diet depending on sex and size. Environ. Biol. Fishes 92, 559–567 (2011).

    Article  Google Scholar 

  42. 42.

    Hussey, N. E. et al. Expanded trophic complexity among large sharks. Food Webs 4, 1–7 (2015).

    Article  Google Scholar 

  43. 43.

    Maljković, A. & Côté, I. M. Effects of tourism-related provisioning on the trophic signatures and movement patterns of an apex predator, the Caribbean reef shark. Biol. Conserv. 144, 859–865 (2011).

    Article  Google Scholar 

  44. 44.

    Matich, P., Heithaus, M. R. & Layman, C. A. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80, 294–305 (2011).

    Article  PubMed  Google Scholar 

  45. 45.

    Kiljunen, M. et al. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J. Appl. Ecol. 43, 1213–1222 (2006).

    CAS  Article  Google Scholar 

Download references


This research was conducted as part of C.S.B.’s Ph.D dissertation, which was funded by the University of Southampton and NERC (NE/L50161X/1), and through a NERC Grant-in-Kind from the Life Sciences Mass Spectrometry Facility (LSMSF; EK267-03/16). We thank A. Bates, D. Sims, F. Neat, R. McGill and J. Newton for their analytical contributions and comments on the manuscripts.

Author information




C.S.B. and C.N.T. contributed the concept and design. C.S.B., C.N.T. and A.V. led the project. C.S.B. and C.N.T. wrote the manuscript. C.S.B., C.N.T., S.M. and A.Y analysed and interpreted the data. C.S.B., C.N.T., A.V., K.G.A., A.A., H.A.-R., A.B., D.M.B., G.B., A.B., M. Bouchoucha, M. Boyle, E.J.B., J.B., P.B., A.C., D.C., J. Ciancio, J. Claes, A.C., D.C., P.C., R.D., L.d.N., T.E., I.F., A.J.F., J.H.H., M.H., N.E.H., J.I., F.J., M.J.K., J.J.K., D.K., R.L., Y.L., S.A.K., A.L., D.M., A.M., L.M.-C., P.M., M.M., F.M., G.M.M., S.M., M.N., Y.P., H.P., J.D.P., C.P.-S., K.Q.-D., V.R., J.R., Y.E.T.-R., D.S.S., O.N.S., C.W.S., M.S., A. Teffer, A. Tilley, M.V., J.J.V., T-C.W., R.J.D.W. and A.S.J.W. provided data and/or samples. All authors have read, provided comments and approved the final manuscript.

Corresponding authors

Correspondence to Christopher S. Bird or Clive N. Trueman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary tables, figures and references.

Life Sciences Reporting Summary

Supplementary Data

Supplementary table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bird, C.S., Veríssimo, A., Magozzi, S. et al. A global perspective on the trophic geography of sharks. Nat Ecol Evol 2, 299–305 (2018). https://doi.org/10.1038/s41559-017-0432-z

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing