Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination

Abstract

Solar geoengineering is receiving increased policy attention as a potential tool to offset climate warming. While climate responses to geoengineering have been studied in detail, the potential biodiversity consequences are largely unknown. To avoid extinction, species must either adapt or move to track shifting climates. Here, we assess the effects of the rapid implementation, continuation and sudden termination of geoengineering on climate velocities—the speeds and directions that species would need to move to track changes in climate. Compared to a moderate climate change scenario (RCP4.5), rapid geoengineering implementation reduces temperature velocities towards zero in terrestrial biodiversity hotspots. In contrast, sudden termination increases both ocean and land temperature velocities to unprecedented speeds (global medians >10 km yr−1) that are more than double the temperature velocities for recent and future climate change in global biodiversity hotspots. Furthermore, as climate velocities more than double in speed, rapid climate fragmentation occurs in biomes such as temperate grasslands and forests where temperature and precipitation velocity vectors diverge spatially by >90°. Rapid geoengineering termination would significantly increase the threats to biodiversity from climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global mean temperature and precipitation for the Geoengineering Model Intercomparison G4 scenario (solar geoengineering) and RCP4.5.
Fig. 2: Temperature and precipitation velocities for geoengineering implementation, termination, historical climate and RCP4.5.
Fig. 3: Kernel density estimates of global land and ocean climate velocities.
Fig. 4: Climate displacement and fragmentation from sudden geoengineering termination.
Fig. 5: Climate velocities for global biodiversity hotspots for historical climate, RCP4.5 and geoengineering.

References

  1. 1.

    Pecl, G. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  PubMed  Google Scholar 

  2. 2.

    Crutzen, P. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim. Change 77, 211–219 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    National Research Council. Climate Intervention: Reflecting Sunlight to Cool Earth (National Academies Press, Washington DC, 2015).

  4. 4.

    Keith, D. W. & MacMartin, D. G. A temporary, moderate and responsive scenario for solar geoengineering. Nat. Clim. Change 5, 201–206 (2015).

    Article  Google Scholar 

  5. 5.

    McCormack, C. G. et al. Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. J. Integr. Environ. Sci. 13, 103–128 (2016).

    Google Scholar 

  6. 6.

    Robock, A., MacMartin, D. G., Duren, R. & Christensen, M. W. Studying geoengineering with natural and anthropogenic analogs. Clim. Change 121, 445–458 (2013).

    Article  Google Scholar 

  7. 7.

    Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nat. Clim. Change 3, 4–6 (2013).

    Article  Google Scholar 

  8. 8.

    Geoengineering in Relation to the Convention on Biological Diversity: Technical and Regulatory Matters CBD Technical Series No. 66 (Secretariat of the Convention on Biological Diversity, Montreal, 2012).

  9. 9.

    Keith, D. W., Weisenstein, D. K., Dykema, J. A. & Keutsch, F. N. Stratospheric solar geoengineering without ozone loss. Proc. Natl Acad. Sci. USA 113, 14910–14914 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Irvine, P. J. et al. Towards a comprehensive climate impacts assessment of solar geoengineering. Earth’s Future 5, 93–106 (2017).

    Article  Google Scholar 

  11. 11.

    Williamson, P. & Bodle, R. Update on Climate Geoengineering in Relation to the Convention on Biological Diversity: Potential Impacts and Regulatory Framework CBD Technical Series No. 84 (Secretariat of the Convention on Biological Diversity, Montreal, 2016).

  12. 12.

    Victor, D. G. On the regulation of geoengineering. Oxf. Rev. Econ. Policy 24, 322–336 (2008).

    Article  Google Scholar 

  13. 13.

    Horton, J. B. & Reynolds, J. L. The international politics of climate engineering: a review and prospectus for international relations. Int. Stud. Rev. 18, 438–461 (2016).

    Article  Google Scholar 

  14. 14.

    Victor, D. G., Morgan, M. G., Apt, J., Steinbruner, J. & Ricke, K. The geoengineering option: a last resort against global warming? Foreign Aff. 88, 64–76 (2009).

    Google Scholar 

  15. 15.

    Reynolds, J. L., Parker, A. & Irvine, P. Five solar geoengineering tropes that have outstayed their welcome. Earth’s Future 4, 562–568 (2016).

    Article  Google Scholar 

  16. 16.

    Jones, A. et al. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 118, 9743–9752 (2013).

    Article  Google Scholar 

  17. 17.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    Article  PubMed  Google Scholar 

  21. 21.

    Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B. & Ackerly, D. D. The velocity of climate change. Nature 462, 1052–1055 (2009).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kravitz, B. et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 12, 162–167 (2011).

    Article  Google Scholar 

  26. 26.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Maher, N., McGregor, S., England, M. H. & Sen Gupta, A. Effects of volcanism on tropical variability. Geophys. Res. Lett. 42, 6024–6033 (2015).

    Article  Google Scholar 

  28. 28.

    Pausata, F. S. R., Karamperidou, C., Caballero, R. & Battisti, D. S. ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: the role of the initial conditions. Geophys. Res. Lett. 43, 8694–8702 (2016).

    Article  Google Scholar 

  29. 29.

    Kwiatkowski, L. et al. Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nat. Clim. Change 5, 777–781 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Caswell, H. Matrix Population Models (Wiley, Hoboken, 2001).

  31. 31.

    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Marlier, M. E. et al. El Niño and health risks from landscape fire emissions in southeast Asia. Nat. Clim. Change 3, 131–136 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Whittaker, R. H. Communities and Ecosystems (Macmillan, New York, 1975).

  34. 34.

    Prentice, C. et al. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19, 117–134 (1992).

    Article  Google Scholar 

  35. 35.

    McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).

    Article  PubMed  Google Scholar 

  36. 36.

    Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).

    Article  Google Scholar 

  37. 37.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  40. 40.

    Robock, A., Oman, L. & Stenchikov, G. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. 113, D16101 (2008).

    Article  Google Scholar 

  41. 41.

    Jones, A., Haywood, J., Boucher, O., Kravitz, B. & Robock, A. Geoengineering by stratospheric SO2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE. Atmos. Chem. Phys. 10, 5999–6006 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3, 660–665 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  44. 44.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  45. 45.

    Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    Hartmann, D. L Global Physical Climatology. 2nd edn (Elsevier, Amsterdam, 2016).

    Google Scholar 

  47. 47.

    CDO 2015: Climate Data Operators (accessed December 2015); http://www.mpimet.mpg.de/cdo

  48. 48.

    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    IUCN Red List (accessed August 2016); http://www.iucnredlist.org/technical-documents/spatial-data

  50. 50.

    Bird Species Distribution Maps of the World (BirdLife International, Cambridge and NatureServe, Arlington, 2015); http://datazone.birdlife.org

  51. 51.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

C.H.T. was supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the US National Science Foundation DBI-1052875. A.R., L.X. and B.Z. were supported by US National Science Foundation grants GEO-1240507, AGS-1430051 and AGS-1617844. We thank the climate modelling groups for making their results available and GeoMIP for organizing the experiments; the Climatic Research Unit, University of East Anglia, for temperature and precipitation data; the UK Hadley Centre for sea surface temperature data; and the International Union for the Conservation of Nature and BirdLife International for species-range maps. Much of the processing chain was implemented at Yale Center for Research Computing (YCRC), and we thank the YCRC staff. We thank T. Carleton, I. Carroll, K. Conca, C. Merrow, L. Palmer, I. Quintero and N. Upham for comments. The cross-disciplinary forums provided by an American Association for the Advancement of Science (AAAS) annual meeting and SESYNC led to the meeting of C.T., J.G. and A.R., initiating this work.

Author information

Affiliations

Authors

Contributions

C.H.T., A.R. and J.G. conceived the study. C.H.T., A.R., J.G., G.A., L.X. and B.Z. designed the study. C.H.T., G.A., L.X. and B.Z. performed the analysis and drew the figures. G.A. wrote the scripting procedure for the geodata processing chain. C.H.T., A.R. and J.G. wrote the paper, with substantial contributions from all authors.

Corresponding author

Correspondence to Christopher H. Trisos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary tables 1–3; supplementary figures 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trisos, C.H., Amatulli, G., Gurevitch, J. et al. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat Ecol Evol 2, 475–482 (2018). https://doi.org/10.1038/s41559-017-0431-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing