Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish

Abstract

The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO2, and to test how these responses are influenced by variations in tolerance to elevated CO2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO2 are crucial factors in determining the response of reef fish to changing ocean chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design of the study.
Fig. 2: Global differential gene expression patterns between treatments.
Fig. 3: Functional enrichment analysis of differentially expressed genes across CO2 rearing treatments that were significant in both differential gene expression models (control, acute, developmental and transgenerational) and different behavioural parental phenotypes (tolerant and sensitive).
Fig. 4: The GABA (γ-aminobutyric acid) signalling pathway in the synapse between a pre- and postsynaptic neuron.
Fig. 5: Expression patterns of histone-related transcripts across all CO2 treatments.

Similar content being viewed by others

References

  1. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    Article  PubMed  Google Scholar 

  2. Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  3. Wittmann, A. C. & Pörtner, H.-O. Sensitivities of extant animal taxa to ocean acidification. Nat. Clim. Change 3, 995–1001 (2013).

    Article  CAS  Google Scholar 

  4. Hamilton, S. L. et al. Species-specific responses of juvenile rockfish to elevated pCO2: from behavior to genomics. PLoS ONE 12, e0169670 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).

    Article  CAS  Google Scholar 

  6. Stiasny, M. H. et al. Ocean acidification effects on Atlantic cod larval survival and recruitment to the fished population. PLoS ONE 11, e0155448 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clements, J. & Hunt, H. Marine animal behaviour in a high CO2 ocean. Mar. Ecol. Prog. Ser. 536, 259–279 (2015).

    Article  CAS  Google Scholar 

  8. Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob. Change Biol. 22, 974–89 (2016).

    Article  Google Scholar 

  9. Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13, 68–75 (2010).

    Article  PubMed  Google Scholar 

  10. Munday, P. L. et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930–12934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).

    Article  Google Scholar 

  12. Chivers, D. P. et al. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob. Change Biol. 20, 515–522 (2014).

    Article  Google Scholar 

  13. Jellison, B. M., Ninokawa, A. T., Hill, T. M., Sanford, E. & Gaylord, B. Ocean acidification alters the response of intertidal snails to a key sea star predator. Proc. R. Soc. B 283, 20160890 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Watson, S.-A. et al. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. Proc. R. Soc. B 281, 20132377 (2013).

  15. Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change 2, 201–204 (2012).

    Article  CAS  Google Scholar 

  16. Heuer, R. M. & Grosell, M. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1061–1084 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).

    Article  PubMed  Google Scholar 

  18. Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).

    Article  PubMed  Google Scholar 

  19. Schlichting, C. D. & Wund, M. A. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 68, 656–672 (2014).

    Article  PubMed  Google Scholar 

  20. Bonduriansky, R., Crean, A. J. & Day, T. The implications of nongenetic inheritance for evolution in changing environments. Evol. Appl. 5, 192–201 (2012).

    Article  PubMed  Google Scholar 

  21. Salinas, S., Brown, S. C., Mangel, M. & Munch, S. B. Non-genetic inheritance and changing environments. Non-Genetic Inherit. 1,  38–50 (2013).

  22. Munday, P. L. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep. 6, 99 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Miller, G. M., Watson, S.-A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat. Clim. Change 2, 858–861 (2012).

    Article  CAS  Google Scholar 

  24. Murray, C., Malvezzi, A., Gobler, C. & Baumann, H. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar. Ecol. Prog. Ser. 504, 1–11 (2014).

    Article  Google Scholar 

  25. Welch, M. J. & Munday, P. L. Heritability of behavioural tolerance to high CO2 in a coral reef fish is masked by non-adaptive phenotypic plasticity. Evol. Appl. 10, 682–693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dupont, S. & Pörtner, H. Marine science: get ready for ocean acidification. Nature 498, 429–429 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Schunter, C. et al. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. Nat. Clim. Change 6, 1014–1018 (2016).

    Article  CAS  Google Scholar 

  28. Born, G. et al. Modulation of synaptic function through the α-neurexin–specific ligand neurexophilin-1. Proc. Natl Acad. Sci. USA 111, E1274–E1283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rasmussen, J. P. & Sagasti, A. Learning to swim, again: axon regeneration in fish. Exp. Neurol. 287, 318–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Pinzón-Olejua, A., Welte, C., Abdesselem, H., Málaga-Trillo, E. & Stuermer, C. A. Essential roles of zebrafish rtn4/Nogo paralogues in embryonic development. Neural Dev. 9, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Snow, R. J. & Murphy, R. M. Creatine and the creatine transporter: a review. Mol. Cell. Biochem. 224, 169–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Frommel, A. Y. et al. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2, 42–46 (2011).

    Article  Google Scholar 

  33. Baumann, H., Talmage, S. C. & Gobler, C. J. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat. Clim. Change 2, 38–41 (2011).

    Article  Google Scholar 

  34. Frommel, A. Y. et al. Organ damage in Atlantic herring larvae as a result of ocean acidification. Ecol. Appl. 24, 1131–1143 (2014).

    Article  PubMed  Google Scholar 

  35. Nilsson, G. E. & Lefevre, S. Physiological challenges to fishes in a warmer and acidified future. Physiology 31, 409–417 (2016).

  36. Riazanski, V. et al. Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus. Nat. Neurosci. 14, 487–494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahnert-Hilger, G. & Jahn, R. CLC-3 spices up GABAergic synaptic vesicles. Nat. Neurosci. 14, 405–407 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Kaila, K. et al. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).

    Article  PubMed  Google Scholar 

  39. Turner, B. M. Epigenetic responses to environmental change and their evolutionary implications. Phil. Trans. R. Soc. B 364, 3403–3418 (2009).

  40. Lerner, R. G., Depatie, C., Rutter, G. A., Screaton, R. A. & Balthasar, N. A role for the CREB co-activator CRTC2 in the hypothalamic mechanisms linking glucose sensing with gene regulation. EMBO Rep. 10, 1175–1181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han, H.-S. et al. Arginine methylation of CRTC2 is critical in the transcriptional control of hepatic glucose metabolism. Sci. Signal. 7, 2004479 (2014).

  42. Talbert, P. B. & Henikoff, S. Environmental responses mediated by histone variants. Trends Cell Biol. 24, 642–650 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Pinto, R. et al. Seasonal environmental changes regulate the expression of the histone variant macroH2A in an eurythermal fish. FEBS Lett. 579, 5553–5558 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Feil, R. & Fraga, M. F. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13, 97–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Padilla-Gamiño, J. L., Kelly, M. W., Evans, T. G. & Hofmann, G. E. Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus. Proc. R. Soc. B 280, 20130155 (2013).

  46. Di Croce, L. & Helin, K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20, 1147–1155 (2013).

    Article  PubMed  Google Scholar 

  47. Mukherjee, J. et al. Proteomic response of marine invertebrate larvae to ocean acidification and hypoxia during metamorphosis and calcification. J. Exp. Biol. 216, 4580–4589 (2013).

  48. Kaniewska, P. et al. Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS ONE 7, e34659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zapara, T. A., Simonova, O. G., Zharkikh, A. A. & Ratushnyak, A. S. The effects of the dynamic state of the cytoskeleton on neuronal plasticity. Neurosci. Behav. Physiol. 30, 347–355 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Scarlett, J. M. et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat. Med. 22, 800–806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  52. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, Camcridge, 2013).

  53. Pierrot, D., Lewis, E. & Wallace, D. MS Excel Program Developed for CO 2 System Calculations ORNL/CDIAC-105a (Carbon Dioxide Information Analysis Center, US Department of Energy, 2006).

  54. Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. A 34, 1733–1743 (1987).

    Article  CAS  Google Scholar 

  55. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Andrews, S. FASTQC: A Quality Control Tool for High Throughput Sequence Data (Bioinformatics, 2010); http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  57. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformation 9, 559 (2008).

    Article  Google Scholar 

  62. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Y. E., Kuznetsov, L., Partensky, A., Farid, J. & Quackenbush, J. WebMeV: a cloud platform for analyzing and visualizing cancer genomic data. Cancer Res. 77, e11–14 (2017).

  64. Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–74 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Office of Competitive Research Funds OSR-2015- CRG4-2541 from the King Abdullah University of Science and Technology (T.R., P.L.M., C.S. and J.L.R.), the Australian Research Council (ARC) and the ARC Centre of Excellence for Coral Reef Studies (P.L.M. and J.L.R.) and the University of Oslo (G.E.N.). We thank the Marine and Aquaculture Research Facilities Unit (JCU), Integrative Systems Biology Laboratory (KAUST) and Biosciences Core Laboratory (KAUST) for support and assistance. Figures 1 to 4 were produced by X. Pita, scientific illustrator at King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Contributions

M.J.W. and P.L.M. designed and managed the fish rearing experiments. M.J.W. performed the adult fish behavioural phenotyping. C.S. prepared the samples for RNA sequencing and analysed transcriptome expression data and performed quantitative real-time PCR expression validation. G.E.N. and J.L.R. assisted in interpreting the expression data. C.S., P.L.M. and T.R. wrote the paper, and all authors read, revised and approved the final manuscript.

Corresponding authors

Correspondence to Philip L. Munday or Timothy Ravasi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1–8.

Life Sciences Reporting Summary

Supplementary Data

Supplementary data sheets 1–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schunter, C., Welch, M.J., Nilsson, G.E. et al. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nat Ecol Evol 2, 334–342 (2018). https://doi.org/10.1038/s41559-017-0428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0428-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing