Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The contribution of predators and scavengers to human well-being

An Author Correction to this article was published on 28 March 2018


Predators and scavengers are frequently persecuted for their negative effects on property, livestock and human life. Research has shown that these species play important regulatory roles in intact ecosystems including regulating herbivore and mesopredator populations that in turn affect floral, soil and hydrological systems. Yet predators and scavengers receive surprisingly little recognition for their benefits to humans in the landscapes they share. We review these benefits, highlighting the most recent studies that have documented their positive effects across a range of environments. Indeed, the benefits of predators and scavengers can be far reaching, affecting human health and well-being through disease mitigation, agricultural production and waste-disposal services. As many predators and scavengers are in a state of rapid decline, we argue that researchers must work in concert with the media, managers and policymakers to highlight benefits of these species and the need to ensure their long-term conservation. Furthermore, instead of assessing the costs of predators and scavengers only in economic terms, it is critical to recognize their beneficial contributions to human health and well-being. Given the ever-expanding human footprint, it is essential that we construct conservation solutions that allow a wide variety of species to persist in shared landscapes. Identifying, evaluating and communicating the benefits provided by species that are often considered problem animals is an important step for establishing tolerance in these shared spaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: International Union for Conservation of Nature global distribution of some species that are known to provide important services to humans over some portion of their range.


  1. 1.

    Carter, N. H. & Linnell, J. D. C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31, 575–578 (2016).

    Article  Google Scholar 

  2. 2.

    Chapron, G. & López-Bao, J. V. Coexistence with large carnivores informed by community ecology. Trends Ecol. Evol. 31, 578–580 (2016).

    Article  Google Scholar 

  3. 3.

    Treves, A. & Bruskotter, J. Tolerance for predatory wildlife. Science 344, 476–477 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Carter, N. H., Riley, S. J. & Liu, J. Utility of a psychological framework for carnivore conservation. Oryx 46, 525–535 (2012).

    Article  Google Scholar 

  5. 5.

    Ripple, W. J. & Beschta, R. L. Large predators limit herbivore densities in northern forest ecosystems. Eur. J. Wildl. Res. 58, 733–742 (2012).

    Article  Google Scholar 

  6. 6.

    Dupont, H., Mihoub, J.-B., Bobbé, S. & Sarrazin, F. Modelling carcass disposal practices: implications for the management of an ecological service provided by vultures. J. Appl. Ecol. 49, 404–411 (2012).

    Article  Google Scholar 

  7. 7.

    Ćirović, D., Penezić, A. & Krofel, M. Jackals as cleaners: ecosystem services provided by a mesocarnivore in human-dominated landscapes. Biol. Conserv. 199, 51–55 (2016).

    Article  Google Scholar 

  8. 8.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 151–162 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Macdonald, E. A. et al. Conservation inequality and the charismatic cat: Felis felicis. Glob. Ecol. Conserv. 3, 851–866 (2015).

    Article  Google Scholar 

  10. 10.

    Thornton, D. et al. Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). Ecol. Appl. 26, 1112–1124 (2016).

    Article  Google Scholar 

  11. 11.

    Ogada, D. L., Keesing, F. & Virani, M. Z. Dropping dead: causes and consequences of vulture population declines worldwide. Ann. NY Acad. Sci. 1249, 57–71 (2012).

    Article  Google Scholar 

  12. 12.

    Bhatia, S., Athreya, V., Grenyer, R. & MacDonald, D. W. Understanding the role of representations of human-leopard conflict in Mumbai through media-content analysis. Conserv. Biol. 27, 588–594 (2013).

    Article  Google Scholar 

  13. 13.

    Penteriani, V. et al. Human behaviour can trigger large carnivore attacks in developed countries. Sci. Rep. 6, 20552 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Suryawanshi, K. R., Bhatnagar, Y. V., Redpath, S. & Mishra, C. People, predators and perceptions: patterns of livestock depredation by snow leopards and wolves. J. Appl. Ecol. 50, 550–560 (2013).

    Article  Google Scholar 

  15. 15.

    Vickers, T. W. et al. Survival and mortality of pumas (Puma concolor) in a fragmented, urbanizing landscape. PLoS ONE 10, e0131490 (2015).

    Article  Google Scholar 

  16. 16.

    Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).

    Article  Google Scholar 

  17. 17.

    Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human–wildlife conflict: health impacts, opportunity and transaction costs. Biol. Conserv. 157, 309–316 (2013).

    Article  Google Scholar 

  18. 18.

    Jacobson, A. P. et al. Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4, e1974 (2016).

    Article  Google Scholar 

  19. 19.

    Chapron, G., López-Bao, J. V., Sayare, S., Harding, C. & Garde, L. Conserving carnivores: politics in play. Science 343, 1199–200 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Di Minin, E. et al. Global priorities for national carnivore conservation under land use change. Sci. Rep. 6, 23814 (2016).

    Article  Google Scholar 

  21. 21.

    Soulsbury, C. D. & White, P. C. L. Human-wildlife interactions in urban areas: a review of conflicts, benefits and opportunities. Wildl. Res. 42, 541–553 (2015).

    Article  Google Scholar 

  22. 22.

    Blackburn, S., Hopcraft, J. G. C., Ogutu, J. O., Matthiopoulos, J. & Frank, L. Human-wildlife conflict, benefit sharing and the survival of lions in pastoralist community-based conservancies. J. Appl. Ecol. 53, 1195–1205 (2016).

    Article  Google Scholar 

  23. 23.

    Gangoso, L. et al. Reinventing mutualism between humans and wild fauna: insights from vultures as ecosystem services providers. Conserv. Lett. 6, 172–179 (2013).

    Article  Google Scholar 

  24. 24.

    Markandya, A. et al. Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204 (2008).

    Article  Google Scholar 

  25. 25.

    Yirga, G. et al. Spotted hyena (Crocuta crocuta) concentrate around urban waste dumps across Tigray, northern Ethiopia. Wildl. Res. 42, 563–569 (2015).

    Article  Google Scholar 

  26. 26.

    Milner-Gulland, E. J. et al. Accounting for the impact of conservation on human well-being. Conserv. Biol. 28, 1160–1166 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Rodriguez-Morales, A. J., Bandeira, A. C. & Franco-Paredes, C. The expanding spectrum of modes of transmission of Zika virus: a global concern. Ann. Clin. Microbiol. Antimicrob. 15, 13 (2016).

    Article  Google Scholar 

  28. 28.

    Olivero, J. et al. Mammalian biogeography and the Ebola virus in Africa. Mamm. Rev. 47, 24–37 (2017).

    Article  Google Scholar 

  29. 29.

    Chen, H. et al. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436, 191–192 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    Taylor, L. H., Latham, S. M. & Woolhouse, M. E. Risk factors for human disease emergence. Phil. Trans. R. Soc. Lond. B 356, 983–989 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    Narasimhan, S. D. Fighting infection in a globalized world. Cell 167, 583–585 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Mizrachi, I. & Fuchs, G. Should we cancel? An examination of risk handling in travel social media before visiting Ebola-free destinations. J. Hosp. Tour. Manag. 28, 59–65 (2016).

    Article  Google Scholar 

  33. 33.

    Lembo, T. et al. Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem. J. Appl. Ecol. 45, 1246–1257 (2008).

    Article  Google Scholar 

  34. 34.

    Harris, N. C. & Dunn, R. R. Species loss on spatial patterns and composition of zoonotic parasites. Proc. R. Soc. B 280, 20131847 (2013).

    Article  Google Scholar 

  35. 35.

    Moore, S. M., Borer, E. T. & Hosseini, P. R. Predators indirectly control vector-borne disease: linking predator–prey and host–pathogen models. J. R. Soc. Interface 7, 161–176 (2009).

    Article  Google Scholar 

  36. 36.

    Khalil, H., Ecke, F., Evander, M. & Hörnfeldt, B. Selective predation on hantavirus-infected voles by owls and confounding effects from landscape properties. Oecologia 181, 597–606 (2016).

    Article  Google Scholar 

  37. 37.

    McCallum, H. How should pathogen transmission be modelled? Trends Ecol. Evol. 16, 295–300 (2001).

    CAS  Article  Google Scholar 

  38. 38.

    Braczkowski, A. et al. Large carnivores as helpers? Implications of leopard presence for public health in Mumbai, India. Front. Ecol. Environ.

  39. 39.

    Levi, T., Kilpatrick, A. M., Mangel, M. & Wilmers, C. C. Deer, predators, and the emergence of Lyme disease. Proc. Natl Acad. Sci. USA 109, 10942–10947 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Ostfeld, R. S. & Holt, R. D. Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front. Ecol. Environ. 2, 13–20 (2004).

    Article  Google Scholar 

  41. 41.

    Brisson, D., Dykhuizen, D. E. & Ostfeld, R. S. Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proc. R. Soc. B 275, 227–35 (2008).

    Article  Google Scholar 

  42. 42.

    Bowatte, G., Perera, P., Senevirathne, G., Meegaskumbura, S. & Meegaskumbura, M. Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol. Control. 67, 469–474 (2013).

    Article  Google Scholar 

  43. 43.

    Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).

    Article  Google Scholar 

  44. 44.

    Oerke, E.-C. & Dehne, H.-W. Safeguarding production—losses in major crops and the role of crop protection. Crop. Prot. 23, 275–285 (2004).

    Article  Google Scholar 

  45. 45.

    Alavanja, M. C. R., Ross, M. K. & Bonner, M. R. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J. Clin. 63, 120–142 (2013).

    Article  Google Scholar 

  46. 46.

    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).

    Article  Google Scholar 

  47. 47.

    Labuschagne, L., Swanepoel, L. H., Taylor, P. J., Belmain, S. R. & Keith, M. Are avian predators effective biological control agents for rodent pest management in agricultural systems? Biol. Control. 101, 94–102 (2016).

    Article  Google Scholar 

  48. 48.

    Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. NY Acad. Sci. 1223, 1–38 (2011).

    Article  Google Scholar 

  49. 49.

    Maine, J. J. & Boyles, J. G. Bats initiate vital agroecological interactions in corn. Proc. Natl Acad. Sci. USA 112, 12438–12443 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    Maas, B., Clough, Y. & Tscharntke, T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16, 1480–1487 (2013).

    Article  Google Scholar 

  51. 51.

    Kross, S. M., Kelsey, T. R., McColl, C. J. & Townsend, J. M. Field-scale habitat complexity enhances avian conservation and avian-mediated pest-control services in an intensive agricultural crop. Agric. Ecosyst. Environ. 225, 140–149 (2016).

    Article  Google Scholar 

  52. 52.

    Kross, S. M., Bourbour, R. P. & Martinico, B. L. Agricultural land use, barn owl diet, and vertebrate pest control implications. Agric. Ecosyst. Environ. 223, 167–174 (2016).

    Article  Google Scholar 

  53. 53.

    Wood, B. J. & Fee, C. G. A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop. Prot. 22, 445–461 (2003).

    Article  Google Scholar 

  54. 54.

    Kross, S. M., Tylianakis, J. M. & Nelson, X. J. Effects of introducing threatened falcons into vineyards on abundance of passeriformes and bird damage to grapes. Conserv. Biol. 26, 142–149 (2012).

    Article  Google Scholar 

  55. 55.

    Sundararaj, V., McLaren, B. E., Morris, D. W. & Goyal, S. P. Can rare positive interactions become common when large carnivores consume livestock? Ecology 93, 272–280 (2012).

    Article  Google Scholar 

  56. 56.

    Prowse, T. A. A., Johnson, C. N., Cassey, P., Bradshaw, C. J. A. & Brook, B. W. Ecological and economic benefits to cattle rangelands of restoring an apex predator. J. Appl. Ecol. 52, 455–466 (2015).

    Article  Google Scholar 

  57. 57.

    Khatiwada, J. R. et al. Frogs as potential biological control agents in the rice fields of Chitwan, Nepal. Agric. Ecosyst. Environ. 230, 307–314 (2016).

    Article  Google Scholar 

  58. 58.

    Teng, Q. et al. Influences of introducing frogs in the paddy fields on soil properties and rice growth. J. Soils Sediment. 16, 51–61 (2016).

    Article  Google Scholar 

  59. 59.

    Rosatte, R., Sobey, K., Dragoo, J. W. & Gehrt, S. D. in Urban Carnivores: Ecology, Conflict, and Conservation (Eds. Cypher, B. L., Gehrt, S. D. & Riley, S. P. D.) 97–106 (Johns Hopkins Univ. Press, Baltimore, 2010).

  60. 60.

    Samia, D. S. M., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).

    CAS  Article  Google Scholar 

  61. 61.

    Lewis, J. S. et al. The effects of urbanization on population density, occupancy, and detection probability of wild felids. Ecol. Appl. 25, 1880–1895 (2015).

    Article  Google Scholar 

  62. 62.

    Gilbert, S. L. et al. Socioeconomic benefits of large carnivore recolonization through reduced wildlife–vehicle collisions. Conserv. Lett. 10, 431–439 (2017).

    Article  Google Scholar 

  63. 63.

    Olea, P. P. & Mateo-Tomás, P. The role of traditional farming practices in ecosystem conservation: the case of transhumance and vultures. Biol. Conserv. 142, 1844–1853 (2009).

    Article  Google Scholar 

  64. 64.

    Gogtay, N. J. et al. Demographics of animal bite victims & management practices in a tertiary care institute in Mumbai, Maharashtra, India. Indian J. Med. Res. 139, 459–462 (2014).

    CAS  Google Scholar 

  65. 65.

    Treves, A. & Bonacic, C. Humanity’s dual response to dogs and wolves. Trends Ecol. Evol. 31, 489–491 (2016).

    Article  Google Scholar 

  66. 66.

    Ripple, W. J. & Beschta, R. L. Large predators limit herbivore densities in northern forest ecosystems. Eur. J. Wildl. Res. 58, 733–742 (2012).

    Article  Google Scholar 

  67. 67.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    CAS  Article  Google Scholar 

  68. 68.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    CAS  Article  Google Scholar 

  69. 69.

    Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flagships. Conserv. Lett. 4, 1–8 (2011).

    Article  Google Scholar 

  70. 70.

    Dobrovolski, R., Loyola, R. D., Guilhaumon, F., Gouveia, S. F. & Diniz-Filho, J. A. F. Global agricultural expansion and carnivore conservation biogeography. Biol. Conserv. 165, 162–170 (2013).

    Article  Google Scholar 

  71. 71.

    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl Acad. Sci. USA 112, 14894–14899 (2015).

    CAS  Article  Google Scholar 

  72. 72.

    Frank, E. G. & Schlenker, W. Balancing economic and ecological goals. Science 353, 651–652 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    McCagh, C., Sneddon, J. & Blache, D. Killing sharks: the media’s role in public and political response to fatal human–shark interactions. Mar. Policy 62, 271–278 (2015).

    Article  Google Scholar 

  74. 74.

    Kissui, B. M. Livestock predation by lions, leopards, spotted hyenas, and their vulnerability to retaliatory killing in the Maasai Steppe, Tanzania. Anim. Conserv. 11, 422–432 (2008).

    Article  Google Scholar 

  75. 75.

    Sadath, N., Kleinschmit, D. & Giessen, L. Framing the tiger—a biodiversity concern in national and international media reporting. For. Policy Econ. 36, 37–41 (2013).

    Article  Google Scholar 

  76. 76.

    Jacobson, S. K., Langin, C., Carlton, J. S. & Kaid, L. L. Content analysis of newspaper coverage of the Florida panther. Conserv. Biol. 26, 171–179 (2012).

    Article  Google Scholar 

  77. 77.

    Muter, B. A., Gore, M. L., Gledhill, K. S., Lamont, C. & Huveneers, C. Australian and U.S. news media portrayal of sharks and their conservation. Conserv. Biol. 27, 187–196 (2013).

    Article  Google Scholar 

  78. 78.

    Chapron, G. & Treves, A. Blood does not buy goodwill: allowing culling increases poaching of a large carnivore. Proc. R. Soc. B 283, 20152939 (2016).

    Article  Google Scholar 

  79. 79.

    Howe, C., Suich, H., Vira, B. & Mace, G. M. Creating win-wins from trade-offs? Ecosystem services for human well-being: a meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Chang. 28, 263–275 (2014).

    Article  Google Scholar 

  80. 80.

    Davis, J. T. et al. It’s not just conflict that motivates killing of orangutans. PLoS ONE 8, e75373 (2013).

    CAS  Article  Google Scholar 

  81. 81.

    Carter, N. H. et al. Coupled human and natural systems approach to wildlife research and conservation. Ecol. Soc. 19, 43 (2014).

    Article  Google Scholar 

  82. 82.

    Wang, S. W. & Macdonald, D. W. Livestock predation by carnivores in Jigme Singye Wangchuck National Park, Bhutan. Biol. Conserv. 129, 558–565 (2006).

    Article  Google Scholar 

  83. 83.

    Hazzah, L. et al. Efficacy of two lion conservation programs in Maasailand, Kenya. Conserv. Biol. 28, 851–860 (2014).

    Article  Google Scholar 

  84. 84.

    Nyhus, P., Fischer, H., Madden, F. & Osofsky, S. Taking the bite out of wildlife damage the challenges of wildlife compensation schemes. Conserv. Pract. 4, 37–43 (2003).

    Article  Google Scholar 

  85. 85.

    Dickman, A. J., Macdonald, E. A. & Macdonald, D. W. A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proc. Natl Acad. Sci. USA 108, 13937–13944 (2011).

    CAS  Article  Google Scholar 

  86. 86.

    Goldman, M. J., de Pinho, J. R. & Perry, J. Beyond ritual and economics: Maasai lion hunting and conservation politics. Oryx 47, 490–500 (2013).

    Article  Google Scholar 

  87. 87.

    Pascual, U. et al. Social equity matters in payments for ecosystem services. Bioscience 64, 1027–1036 (2014).

    Article  Google Scholar 

  88. 88.

    Skupien, G. M., Andrews, K. M. & Larson, L. R. Teaching tolerance? Effects of conservation education programs on wildlife acceptance capacity for the American alligator. Hum. Dimens. Wildl. 21, 264–279 (2016).

    Article  Google Scholar 

  89. 89.

    Marley, J. et al. Does human education reduce conflicts between humans and bears? An agent-based modelling approach. Ecol. Model. 343, 15–24 (2017).

    Article  Google Scholar 

  90. 90.

    Steinmetz, R., Srirattanaporn, S., Mor-Tip, J. & Seuaturien, N. Can community outreach alleviate poaching pressure and recover wildlife in South-East Asian protected areas? J. Appl. Ecol. 51, 1469–1478 (2014).

    Article  Google Scholar 

  91. 91.

    Reid, J. L. Knowledge and experience predict indiscriminate bat-killing intentions among Costa Rican men. Biotropica 48, 394–404 (2016).

    Article  Google Scholar 

  92. 92.

    Slagle, K., Zajac, R., Bruskotter, J., Wilson, R. & Prange, S. Building tolerance for bears: a communications experiment. J. Wildl. Manag. 77, 863–869 (2013).

    Article  Google Scholar 

  93. 93.

    Day, M. Italians recruit bats to take sting out of summer. Independent (20 June 2010).

  94. 94.

    Choksi, M. Sheikh of the skies. Slate (10 April 2015).

  95. 95.

    O’Mahony, J. et al. At What Price? The Economic, Social and Icon Value of the Great Barrier Reef (Deloitte Access Economics, Brisbane, 2017).

    Google Scholar 

  96. 96.

    Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. The numbers of the beast: valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Glob. Ecol. Conserv. 11, 106–114 (2017).

    Article  Google Scholar 

  97. 97.

    Morales-Reyes, Z. et al. Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions. Sci. Rep. 5, 7811 (2015).

    CAS  Article  Google Scholar 

  98. 98.

    Whelan, C. J., Şekercioğlu, Ç. H. & Wenny, D. G. Why birds matter: from economic ornithology to ecosystem services. J. Ornithol. 156, 227–238 (2015).

    Article  Google Scholar 

  99. 99.

    Courchamp, F. et al. Rarity value and species extinction: the anthropogenic Allee effect. PLoS Biol. 4, e415 (2006).

    Article  Google Scholar 

  100. 100.

    Dickman, A. J., Hazzah, L., Carbone, C. & Durant, S. M. Carnivores, culture and ‘contagious conflict’: multiple factors influence perceived problems with carnivores in Tanzania’s Ruaha landscape. Biol. Conserv. 178, 19–27 (2014).

    Article  Google Scholar 

  101. 101.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, 1–9 (2017).

    Article  Google Scholar 

  102. 102.

    Worm, B. & Paine, R. T. Humans as a hyperkeystone species. Trends Ecol. Evol. 31, 600–607 (2016).

    Article  Google Scholar 

  103. 103.

    Scheffer, M. et al. Creating a safe operating space for iconic ecosystems. Science 347, 1317–1319 (2015).

    CAS  Article  Google Scholar 

  104. 104.

    Ripple, W. J. et al. Conserving the world’s megafauna and biodiversity: the fierce urgency of now. Bioscience 67, 197–200 (2017).

    Google Scholar 

Download references


C.J.O. would like to thank J. Wallace Coffey for his wisdom and mentorship leading to this manuscript. His legacy will not be forgotten. This work was funded partly by an Invasive Animal Cooperative Research Centre top-up scholarship and an Australian International Postgraduate Research Scholarship to C.J.O., by an ARC DECRA Fellowship to E.M.-M., and an ARC DECRA grant to H.L.B. N.H.C is grateful for support from the NSF Idaho EPSCoR Program (NSF award IIA-1301792).

Author information




C.J.O, J.E.M.W. and A.R.B. conceived the idea for the Review. C.J.O. wrote most of the manuscript and located case studies. H.L.B., E.M.-M. and N.H.C. assisted with conceptual framing and style. All authors contributed with editing and writing.

Corresponding author

Correspondence to Christopher J. O’Bryan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Bryan, C.J., Braczkowski, A.R., Beyer, H.L. et al. The contribution of predators and scavengers to human well-being. Nat Ecol Evol 2, 229–236 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing