Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems


Understanding how loss of biodiversity affects ecosystem functioning, and thus the delivery of ecosystem goods and services, has become increasingly necessary in a changing world. Considerable recent attention has focused on predicting how biodiversity loss simultaneously impacts multiple ecosystem functions (that is, ecosystem multifunctionality), but the ways in which these effects vary across ecosystems remain unclear. Here, we report the results of two 19-year plant diversity manipulation experiments, each established across a strong environmental gradient. Although the effects of plant and associated fungal diversity loss on individual functions frequently differed among ecosystems, the consequences of biodiversity loss for multifunctionality were relatively invariant. However, the context-dependency of biodiversity effects also worked in opposing directions for different individual functions, meaning that similar multifunctionality values across contrasting ecosystems could potentially mask important differences in the effects of biodiversity on functioning among ecosystems. Our findings highlight that an understanding of the relative contribution of species or functional groups to individual ecosystem functions among contrasting ecosystems and their interactions (that is, complementarity versus competition) is critical for guiding management efforts aimed at maintaining ecosystem multifunctionality and the delivery of multiple ecosystem services.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Influence of plant species and functional group removals on individual ecosystem functions.
Fig. 2: Influence of plant species and functional group removals on ecosystem multifunctionality.
Fig. 3: Effects of plant removals on fungal community structure and diversity.
Fig. 4: Relationship between fungal species richness and ecosystem multifunctionality.
Fig. 5: Importance of biodiversity and island size class (that is, environmental context) on 15 individual ecosystem functions and overall ecosystem multifunctionality, as revealed by variance partitioning analysis.


  1. 1.

    Duraiappah, A. K. et al. Ecosystems and Human Well-Being: Biodiversity Synthesis (World Resources Institute, Washington DC, 2005).

  2. 2.

    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Emmett Duffy, J., Paul Richardson, J. & Canuel, E. A. Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol. Lett. 6, 637–645 (2003).

    Article  Google Scholar 

  5. 5.

    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Mori, A. S. et al. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecol. Lett. 19, 249–259 (2016).

    Article  PubMed  Google Scholar 

  7. 7.

    Gamfeldt, L. & Roger, F. Revisiting the biodiversity–ecosystem multifunctionality relationship. Nat. Ecol. Evol. 1, 0168 (2017).

    Article  Google Scholar 

  8. 8.

    Byrnes, J. E. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Article  Google Scholar 

  9. 9.

    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  10. 10.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article  Google Scholar 

  12. 12.

    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  13. 13.

    Symstad, A. J. & Tilman, D. Diversity loss, recruitment limitation, and ecosystem functioning: lessons learned from a removal experiment. Oikos 92, 424–435 (2001).

    Article  Google Scholar 

  14. 14.

    Flombaum, P. & Sala, O. E. Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proc. Natl Acad. Sci. USA 105, 6087–6090 (2008).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  15. 15.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).

    Article  Google Scholar 

  18. 18.

    Eisenhauer, N. et al. Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. J. Veg. Sci. 27, 1061–1070 (2016).

    Article  Google Scholar 

  19. 19.

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  20. 20.

    Van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  21. 21.

    Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  22. 22.

    Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).

    Article  PubMed  Google Scholar 

  23. 23.

    Wardle, D. A. & Zackrisson, O. Effects of species and functional group loss on island ecosystem properties. Nature 435, 806–810 (2005).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Fridley, J. D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132, 271–277 (2002).

    Article  PubMed  Google Scholar 

  25. 25.

    Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  27. 27.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  28. 28.

    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  29. 29.

    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  30. 30.

    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Clemmensen, K. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests. New Phytol. 205, 1525–1536 (2015).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).

    Article  PubMed  Google Scholar 

  34. 34.

    Wardle, D. A. et al. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long‐term natural experiment. J. Ecol. 100, 16–30 (2012).

    Article  Google Scholar 

  35. 35.

    Wardle, D. A., Hörnberg, G., Zackrisson, O., Kalela-Brundin, M. & Coomes, D. A. Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300, 972–975 (2003).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Van der Plas, F. et al. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  37. 37.

    Leibold, M. A., Chase, J. M. & Ernest, S. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).

    Article  PubMed  Google Scholar 

  38. 38.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Meyer, S. T. et al. Biodiversity–multifunctionality relationships depend on identity and number of measured functions. Nat. Ecol. Evol. (2017).

  40. 40.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  41. 41.

    HilleRisLambers, J., Adler, P., Harpole, W., Levine, J. & Mayfield, M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).

    Article  Google Scholar 

  42. 42.

    Kumordzi, B. B. et al. Linkage of plant trait space to successional age and species richness in boreal forest understorey vegetation. J. Ecol. 103, 1610–1620 (2015).

    Article  Google Scholar 

  43. 43.

    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Kardol, P., Spitzer, C. M., Gundale, M. J., Nilsson, M. C. & Wardle, D. A. Trophic cascades in the bryosphere: the impact of global change factors on top‐down control of cyanobacterial N2‐fixation. Ecol. Lett. 19, 967–976 (2016).

    Article  PubMed  Google Scholar 

  45. 45.

    Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).

    Article  PubMed  Google Scholar 

  46. 46.

    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  47. 47.

    Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine‐scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).

    Article  Google Scholar 

  48. 48.

    Tiunov, A. V. & Scheu, S. Facilitative interactions rather than resource partitioning drive diversity‐functioning relationships in laboratory fungal communities. Ecol. Lett. 8, 618–625 (2005).

    Article  Google Scholar 

  49. 49.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  51. 51.

    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

  52. 52.

    Wardle, D. A., Zackrisson, O., Hörnberg, G. & Gallet, C. The influence of island area on ecosystem properties. Science 277, 1296–1299 (1997).

    CAS  Article  Google Scholar 

  53. 53.

    Lagerström, A., Nilsson, M. C., Zackrisson, O. & Wardle, D. Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct. Ecol. 21, 1027–1033 (2007).

    Article  Google Scholar 

  54. 54.

    Nilsson, M.-C. & Wardle, D. A. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 3, 421–428 (2005).

    Article  Google Scholar 

  55. 55.

    Peltzer, D. A. et al. Understanding ecosystem retrogression. Ecol. Monogr. 80, 509–529 (2010).

    Article  Google Scholar 

  56. 56.

    Dıaz, S., Symstad, A. J., Chapin, F. S., Wardle, D. A. & Huenneke, L. F. Functional diversity revealed by removal experiments. Trends Ecol. Evol. 18, 140–146 (2003).

    Article  Google Scholar 

  57. 57.

    Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford Univ. Press, Oxford, 2010).

  58. 58.

    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Wall, D. H. et al. Soil Ecology and Ecosystem Services (Oxford Univ. Press, Oxford, 2012).

  60. 60.

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Pasari, J. R., Levi, T., Zavaleta, E. S. & Tilman, D. Several scales of biodiversity affect ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 110, 10219–10222 (2013).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  62. 62.

    Mouillot, D., Villéger, S., Scherer-Lorenzen, M. & Mason, N. W. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 6, e17476 (2011).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  63. 63.

    Maestre, F. T., Castillo‐Monroy, A. P., Bowker, M. A. & Ochoa‐Hueso, R. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J. Ecol. 100, 317–330 (2012).

    CAS  Article  Google Scholar 

  64. 64.

    Hoaglin, D. C. & Iglewicz, B. Fine-tuning some resistant rules for outlier labeling. J. Am. Stat. Assoc. 82, 1147–1149 (1987).

    Article  Google Scholar 

  65. 65.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Article  Google Scholar 

  66. 66.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  67. 67.

    Witten, D. M. Classification and clustering of sequencing data using a Poisson model. Ann. Appl. Stat. 5, 2493–2518 (2011).

    Article  Google Scholar 

  68. 68.

    Verhoeven, K. J., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647 (2005).

    Article  Google Scholar 

  69. 69.

    Boström, B., Comstedt, D. & Ekblad, A. Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153, 89–98 (2007).

    Article  PubMed  Google Scholar 

  70. 70.

    Hobbie, E. A. & Ouimette, A. P. Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95, 355–371 (2009).

    CAS  Article  Google Scholar 

  71. 71.

    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  72. 72.

    Tremblay, A. & Ransijn, J. Model Selection and Post-Hoc Analysis for (G)LMER Models (R Foundation for Statistical Computing, Vienna, 2012).

Download references


We thank numerous assistants for help in the field and laboratory. We also thank B. Lindahl and K. Clemmensen for guidance on the fungal component of the work and helpful comments on earlier versions of the manuscript. This work was supported by grants to D.A.W. from the Swedish Research Council (Vetenskapsrådet) and a Wallenberg Scholars award.

Author information




D.A.W. acquired the necessary funding and designed the experiment. N.F., D.A.W., P.K., M.J.G., M.-C.N., M.F., M.C. and J.A.B. collected and analysed the data. N.F. wrote the first draft of the manuscript with substantial improvements by D.A.W. and P.K. All authors contributed to manuscript completion and revision.

Corresponding author

Correspondence to Nicolas Fanin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, tables and figures.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fanin, N., Gundale, M.J., Farrell, M. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat Ecol Evol 2, 269–278 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing