Article | Published:

The rise and fall of the Old World savannah fauna and the origins of the African savannah biome

Nature Ecology & Evolutionvolume 2pages241246 (2018) | Download Citation


Despite much interest in the ecology and origins of the extensive grassland ecosystems of the modern world, the biogeographic relationships of savannah palaeobiomes of Africa, India and mainland Eurasia have remained unclear. Here we assemble the most recent data from the Neogene mammal fossil record in order to map the biogeographic development of Old World mammalian faunas in relation to palaeoenvironmental conditions. Using genus-level faunal similarity and mean ordinated hypsodonty in combination with palaeoclimate modelling, we show that savannah faunas developed as a spatially and temporally connected entity that we term the Old World savannah palaeobiome. The Old World savannah palaeobiome flourished under the influence of middle and late Miocene global cooling and aridification, which resulted in the spread of open habitats across vast continental areas. This extensive biome fragmented into Eurasian and African branches due to increased aridification in North Africa and Arabia during the late Miocene. Its Eurasian branches had mostly disappeared by the end of the Miocene, but the African branch survived and eventually contributed to the development of Plio–Pleistocene African savannah faunas, including their early hominins. The modern African savannah fauna is thus a continuation of the extensive Old World savannah palaeobiome.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 15 January 2018

    In the version of this Article originally published, each of the five panels in Fig. 5 incorrectly contained a black diagonal line across the plot. This has now been corrected.


  1. 1.

    Watson, J. E. M. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 1–6 (2016).

  2. 2.

    Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotsposts, and conservation. Proc. Natl Acad. Sci. USA 103, 19374–19379 (2006).

  3. 3.

    Kingdon, J. Field Guide to African Mammals (Academic Press, San Diego, CA, 1997).

  4. 4.

    White, F. The Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa (United Nations Educational, Scientific and Cultural Organization, 1984).

  5. 5.

    Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).

  6. 6.

    Eronen, J. et al. Distribution history and climatic controls of the Late Miocene Pikermian chronofuana. Proc. Natl Acad. Sci. USA 106, 11867–11871 (2009).

  7. 7.

    Solounias, N., Plavcan, J. M., Quade, J. & Witmer, L. in The Evolution of Neogene Terrestrial Ecosystems in Europe (eds Agusti, J., Rook, L. & Andrews, P.) 436–453 (Cambridge Univ. Press, Cambridge, 1999).

  8. 8.

    Solounias, N., Semprebon, G. M., Mihlbachler, M. & Rivals, F. in Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology (eds Wang, X., Fortelius, M. & Flynn, L.) 676–692 (Columbia Univ. Press, New York, 2013).

  9. 9.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

  10. 10.

    Mirzaie Ataabadi, M., et al. in Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology (eds Wang, X., Fortelius, M. & Flynn, L.) 546–565 (Columbia Univ. Press, New York, 2013).

  11. 11.

    Fortelius, M. et al. Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annu. Rev. Earth Planet. Sci. 42, 579–604 (2014).

  12. 12.

    Solounias, N., Rivals, F. & Semprebon, G. Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (late Miocene of Greece). Paleobiology 36, 113–136 (2010).

  13. 13.

    Bernor, R. L. in New Interpretations of Ape and Human Ancestry (eds Ciochon, R. L. & Corruccini, R. S.) 21–64 (Plenum Press, New York, 1983).

  14. 14.

    Janis, C. M. & Fortelius, M. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol. Rev. 63, 197–230 (1988).

  15. 15.

    Jernvall, J. & Fortelius, M. Common mammals drive the evolutionary increase of hypsodonty in the Neogene. Nature 417, 538–540 (2002).

  16. 16.

    Agustí, J. in Handbook of Paleoanthropology (eds Henke, W. & Tattersal, I.) 979–1010 (Springer Books, Berlin/Heidelberg, 2015).

  17. 17.

    Koufos, D. G. in Handbook of Paleoanthropology (eds Henke, W. & Tattersal, I.) 1761–1790 (Springer Books, Berlin/Heidelberg, 2015).

  18. 18.

    Begun, D. R., Nargolwalla, M. C. & Kordos, L. European Miocene hominids and the origin of the African ape and human clade. Evol. Anthr. 21, 10–23 (2012).

  19. 19.

    Nakaya, H. Faunal change of late Miocene Africa and Eurasia: mammalian fauna from the Namurungule Formation, Samburu Hills, Northern Kenya. Afr. Stud. Monogr. 20, 1–112 (1994).

  20. 20.

    Thomas, H. Les bovidae (Artiodactyla: Mammalia) du miocene du sous-continent indien, de la peninsule arabique et de l’afrique: biostratigraphie, biogeographie et ecologie. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45, 251–299 (1984).

  21. 21.

    Bernor, R. L., Rook, L. & Haile-Selassie, Y. in Ardipithecus kadabba; Late Miocene Evidence from the Middle Awash, Ethiopia (eds Haile-Selassie, Y. & WoldeGabriel, G.) 549–563 (Univ. California Press, Berkeley, CA, 2009).

  22. 22.

    Katoh, S. et al. New geological and palaeontological age constraint for the gorilla–human lineage split. Nature 530, 215–218 (2016).

  23. 23.

    Bibi, F. Mio–Pliocene faunal exchanges and African biogeography: the record of fossil bovids. PLoS ONE 6, e16688 (2011).

  24. 24.

    Leakey, M. G. & Harris, J. M. in Lothagam: The Dawn of Humanity in Eastern Africa (eds Leakey, M. G. & Harris, J. M.) 625–655 (Columbia Univ. Press, New York, 2003).

  25. 25.

    Kaya, F. Paleobiogeographic and Paleoecologic Development of the Old World Savanna Paleobiome. PhD thesis, Univ. Helsinki (2017).

  26. 26.

    Boaz, N. T. A view to the south: Eo-Sahabi palaeoenvironments compared and implications for hominid origins in Neogene North Africa. Garyounis Sci. Bull. Spec. Issue 5, 291–308 (2008).

  27. 27.

    Bibi, F., Hill, A., Beech, M. & Yasin, W. in Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology (eds Wang, X., Fortelius, M. & Flynn, L.) 583–594 (Columbia Univ. Press, New York, 2013).

  28. 28.

    Gilbert, C. C., Bibi, F., Hill, A. & Beech, M. J. Early guenon from the late Miocene Baynunah Formation, Abu Dhabi, with implications for cercopithecoid biogeography and evolution. Proc. Natl Acad. Sci. USA 111, 10119–10124 (2014).

  29. 29.

    Schuster, M. et al. The age of the Sahara desert. Science 311, 821 (2006).

  30. 30.

    Ségalen, L., Lee-Thorp, J. A. & Cerling, T. E. Timing of C4 grass expansion across sub-Saharan Africa. J. Hum. Evol. 53, 549–559 (2007).

  31. 31.

    Cerling, T. E. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 241–247 (1992).

  32. 32.

    Bernor, R. L. New apes fill the gap. Proc. Natl Acad. Sci. USA 104, 19661–19662 (2007).

  33. 33.

    Rook, L. & Bernor, R. L. Ancestry of the African ape–human clade. Palaeontogr. Ital. 89, 30–31 (2003).

  34. 34.

    Kaya, F. Anadolu’nun Neojen Donem memeli paleobioyocografyasi ve paleoekolojisi. Kebikec 43, 157–176 (2017).

  35. 35.

    Bernor, R. L. A zoogeographic theater and a biochronologic play: the time/biofacies phenomena of Eurasian and African Miocene mammal provinces. Paléob. Cont. 14, 121–142 (1984).

  36. 36.

    Beden, M. & Brunet, M. Faunes de mammifères et paléobio-géographie des domaines indiens et péri-i ndiens au Néogène. Sci. Terre 47, 61–87 (1986).

  37. 37.

    Fortelius, M., et al. in The Evolution of Western Eurasian Neogene Mammal Faunas (eds Bernor, R. L., Fahlbusch, V. & Mittmann, H. W.) 414–448 (Columbia Univ. Press, New York, 1996).

  38. 38.

    The NOW Community. New and Old Worlds Database of Fossil Mammals (NOW). Licensed under CC BY 4.0. (2017).

  39. 39.

    Werdelin, L. & Sanders, W. J. Cenozoic Mammals of Africa (Univ. California Press, Berkeley, CA, 2010).

  40. 40.

    Hilgen, F., Lourens, L. & Van Dam, J. in The Geologic Time Scale 2012 (eds Gradstein, F., Ogg, J., Schmitz, M. & Ogg, G.) 923–978 (Elsevier, Amsterdam, 2012).

  41. 41.

    Werdelin, L. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 27–44 (Univ. California Press, Berkeley, CA, 2010).

  42. 42.

    Steininger, F. F., et al. in The Evolution of Western Eurasian Neogene Mammal Faunas (eds Bernor, R. L., Fahlbusch, V. & Mittmann, H. W.) 7–46 (Columbia Univ. Press, New York, 1996).

  43. 43.

    Hammer, Q., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).

  44. 44.

    Raup, D. & Crick, R. E. Measurement of faunal similarity in paleontology. J. Paleo. 53, 1213–1227 (1979).

  45. 45.

    Aranz Geo. LeapFrog Geo Software v.3.1 64 bit (Aranz Geo Ltd., 2016).

  46. 46.

    Fortelius, M. et al. Fossil mammals resolve regional patterns of Eurasian climate change during 20 million years. Evol. Ecol. Res. 4, 1005–1016 (2002).

  47. 47.

    Liu, L. et al. Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proc. R. Soc. B 279, 2793–2799 (2012).

  48. 48.

    Micheels, A. et al. Analysis of heat transport mechanisms from a late Miocene model experiment with a fully-coupled atmosphere–ocean general circulation model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304, 337–350 (2011).

  49. 49.

    Tang, H., Eronen, J. T., Micheels, A. & Ahrens, B. Strong interannual variation of the Indian summer monsoon in the late Miocene. Clim. Dyn. 41, 135–153 (2013).

  50. 50.

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

Download references


We thank A. Karme and G. Berni for their guidance with the three-dimensional geology software and the Department of Geosciences and Geography at the University of Helsinki for providing LeapFrog Geo. We are grateful to A. H. Kaya for language improvement. J.T.E. acknowledges support from the Marie Curie Actions of the EC and Kone Foundation. M.F. acknowledges funding from the Academy of Finland and an award from the Alexander von Humboldt Foundation. The work of F.K. was supported by an Academy of Finland grant to M.F.

Author information


  1. Department of Geosciences and Geography, University of Helsinki, PO Box 64 (G. Hälströminkatu 2), Helsinki, Finland

    • Ferhat Kaya
    • , Indrė Žliobaitė
    • , Jussi T. Eronen
    •  & Mikael Fortelius
  2. Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, Berlin, Germany

    • Faysal Bibi
    •  & Mikael Fortelius
  3. Department of Computer Science, University of Helsinki, PO Box 64 (G. Hälströminkatu 2), Helsinki, Finland

    • Indrė Žliobaitė
  4. BIOS Independent Research Unit, Kalliolanrinne 4, Helsinki, Finland

    • Jussi T. Eronen
  5. Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt, Germany

    • Jussi T. Eronen
  6. Department of Geosciences, University of Oslo, PO Box 1047 Blindern, Oslo, Norway

    • Tang Hui
  7. Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo, Norway

    • Mikael Fortelius


  1. Search for Ferhat Kaya in:

  2. Search for Faysal Bibi in:

  3. Search for Indrė Žliobaitė in:

  4. Search for Jussi T. Eronen in:

  5. Search for Tang Hui in:

  6. Search for Mikael Fortelius in:


F.K., M.F., J.T.E. and F.B. designed the research. F.K. updated the taxonomic identifications of African localities in the NOW database, performed the computational similarity and mean ordinated hypsodonty analyses and designed the figures. I.Z. performed the sensitivity tests and analysis of the computational methodology. H.T. (T.H.) performed the climate modelling. All authors participated in the interpretation of the results and wrote the paper. M.F. supervised the study. Some of the same content, including an earlier manuscript version of this paper, was included in the PhD thesis of Ferhat Kaya25. A single-authored article published by Ferhat Kaya in the Turkish social sciences journal Kebikec34 used the same data and methods to analyse the Anatolian subset of localities. The Turkish text is closely focused on Anatolia but the English abstract of that paper mentions some of the main conclusions of this paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ferhat Kaya.

Supplementary information

  1. Supplementary Information

    Supplementary data and methods

  2. Life Sciences Reporting Summary

  3. Supplementary Table 1

    List of some selected localities with their age information and GFRI values to the Lower Nawata in Figs. 1, 3 and 4. Abbreviations; PDL stands for Present Day Location, N symbolize stands for sample size, and GFRI stands for genus level faunal resemblance indices

  4. Supplementary Table 4

    List of selected early and middle Miocene sites with age information and GFRI values used for Raup-Crick GFRI analysis in Figs. 1, 3 and 4.

  5. Supplementary Table 5

    List of selected late Miocene sites with age information and GFRI values used for Raup-Crick GFRI analysis in Figs. 1, 3 and 4.

  6. Supplementary Table 6

    List of selected Pliocene sites with age information and GFRI values used for Raup-Crick GFRI analysis in Figs. 1, 3 and 4.

  7. Supplementary Table 7

    The locality list with age information and mean hypsodonty values used for mean ordinated hypsodonty analysis in Figs. 1 and 2.

  8. Supplementary Figure 11

    Biogeographical development of the OWSP during the late Miocene. Video animation of the Raup-Crick GFRI with values above 0.7 from 12 to 1.8 Ma for the Nawatian (blue), Pikermian (red), and Baodean (yellow). The increase in the similarity among the Eurasian and African early late Miocene faunas coincides with the parallel expansion of the Nawatian, the Pikermian and the Baodean resulted in the birth of the Old World savanna paleobiome that reaches its climax during the middle late Miocene. The Pikermian decreases suddenly in western and central Eurasia, the Baodean chronofauna survives into the Pliocene and disappear, and the Nawatian eventually evolved to the East African modern savanna fauna.

About this article

Publication history





Article notes

A correction to this article is available online at

Further reading