Risks to pollinators and pollination from invasive alien species


Invasive alien species modify pollinator biodiversity and the services they provide that underpin ecosystem function and human well-being. Building on the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) global assessment of pollinators and pollination, we synthesize current understanding of invasive alien impacts on pollinators and pollination. Invasive alien species create risks and opportunities for pollinator nutrition, re-organize species interactions to affect native pollination and community stability, and spread and select for virulent diseases. Risks are complex but substantial, and depend greatly on the ecological function and evolutionary history of both the invader and the recipient ecosystem. We highlight evolutionary implications for pollination from invasive alien species, and identify future research directions, key messages and options for decision-making.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Conceptual synthesis of the direct and indirect impacts on native pollinators and native plant pollination from invasive alien species of plants, predators, introduced pollinators and their pests and pathogens.
Fig. 2: Invasive alien plant impact on pollinator visitation and network structure.
Fig. 3: Global movement of managed pollinators and risk of altered host–vector–pathogen dynamics.
Fig. 4: Complex interactions between alien predators, alien and native pollinators, and native plants transform and maintain pollination in highly modified ecosystems.


  1. 1.

    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

  2. 2.

    Vanbergen, A. J., The Insect Pollinators Initiative. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).

  3. 3.

    IPBES Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, 2016).

  4. 4.

    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

  5. 5.

    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

  6. 6.

    Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).

  7. 7.

    Albrecht, M., Padrón, B., Bartomeus, I. & Traveset, A. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proc. R. Soc. B 281, 20140773 (2014).

  8. 8.

    Goodell, K. & Parker, I. M. Invasion of a dominant floral resource: effects on the floral community and pollination of native plants. Ecology 98, 57–69 (2017).

  9. 9.

    Herron-Sweet, C. R., Lehnhoff, E. A., Burkle, L. A., Littlefield, J. L. & Mangold, J. M. Temporal- and density-dependent impacts of an invasive plant on pollinators and pollination services to a native plant. Ecosphere 7, e01233 (2016).

  10. 10.

    Jones, E. I. & Gomulkiewicz, R. Biotic interactions, rapid evolution, and the establishment of introduced species. Am. Nat. 179, E28–E36 (2012).

  11. 11.

    Vandepitte, K. et al. Rapid genetic adaptation precedes the spread of an exotic plant species. Mol. Ecol. 23, 2157–2164 (2014).

  12. 12.

    Bossdorf, O. et al. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144, 1–11 (2005).

  13. 13.

    IPBES The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, 2016).

  14. 14.

    Traveset, A. & Richardson, D. M. Mutualistic interactions and biological invasions. Annu. Rev. Ecol. Evol. Syst. 45, 89–113 (2014).

  15. 15.

    Traveset, A. & Richardson, D. M. Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol. Evol. 21, 208–216 (2006).

  16. 16.

    Bjerknes, A. L., Totland, O., Hegland, S. J. & Nielsen, A. Do alien plant invasions really affect pollination success in native plant species? Biol. Conserv. 138, 1–12 (2007).

  17. 17.

    Stout, J. C. & Morales, C. L. Ecological impacts of invasive alien species on bees. Apidologie 40, 388–409 (2009).

  18. 18.

    Uesugi, A. & Kessler, A. Herbivore exclusion drives the evolution of plant competitiveness via increased allelopathy. New Phytol. 198, 916–924 (2013).

  19. 19.

    Pysek, P. et al. Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecol. Monogr. 81, 277–293 (2011).

  20. 20.

    Morales, C. L. & Traveset, A. A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol. Lett. 12, 716–728 (2009).

  21. 21.

    Chrobock, T. et al. Effects of native pollinator specialization, self-compatibility and flowering duration of European plant species on their invasiveness elsewhere. J. Ecol. 101, 916–923 (2013).

  22. 22.

    Masters, J. A. & Emery, S. M. The showy invasive plant Ranunculus ficaria facilitates pollinator activity, pollen deposition, but not always seed production for two native spring ephemeral plants. Biol. Invasions 17, 2329–2337 (2015).

  23. 23.

    Traveset, A. et al. Invaders of pollination networks in the Galápagos Islands: emergence of novel communities. Proc. R. Soc. B 280, 20123040 (2013).

  24. 24.

    Vilà, M. et al. Invasive plant integration into native plant–pollinator networks across Europe. Proc. R. Soc. B 276, 3887–3893 (2009).

  25. 25.

    Kleijn, D. & Raemakers, I. A retrospective analysis of pollen host plant use by stable and declining bumble bee species. Ecology 89, 1811–1823 (2008).

  26. 26.

    Harmon-Threatt, A. N. & Kremen, C. Bumble bees selectively use native and exotic species to maintain nutritional intake across highly variable and invaded local floral resource pools. Ecol. Entomol. 40, 471–478 (2015).

  27. 27.

    Sedivy, C., Muller, A. & Dorn, S. Closely related pollen generalist bees differ in their ability to develop on the same pollen diet: evidence for physiological adaptations to digest pollen. Funct. Ecol. 25, 718–725 (2011).

  28. 28.

    Paoli, P. et al. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449–1458 (2014).

  29. 29.

    Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).

  30. 30.

    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).

  31. 31.

    Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890 (2014).

  32. 32.

    Jha, S. & Kremen, C. Resource diversity and landscape-level homogeneity drive native bee foraging. Proc. Natl Acad. Sci. USA 110, 555–558 (2013).

  33. 33.

    Tasei, J.-N. & Aupinel, P. Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39, 397–409 (2008).

  34. 34.

    Praz, C. J., Müller, A. & Dorn, S. Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen? Ecology 89, 795–804 (2008).

  35. 35.

    Palladini, J. & Maron, J. Reproduction and survival of a solitary bee along native and exotic floral resource gradients. Oecologia 176, 789–798 (2014).

  36. 36.

    Vanderplanck, M. et al. The importance of pollen chemistry in evolutionary host shifts of bees. Sci. Rep. 7, 43058 (2017).

  37. 37.

    Tiedeken, E. J. et al. Nectar chemistry modulates the impact of an invasive plant on native pollinators. Funct. Ecol. 30, 885–893 (2016).

  38. 38.

    Arnold, S. E. J., Peralta Idrovo, M. E., Lomas Arias, L. J., Belmain, S. R. & Stevenson, P. C. Herbivore defence compounds occur in pollen and reduce bumblebee colony fitness. J. Chem. Ecol. 40, 878–881 (2014).

  39. 39.

    Mandelik, Y., Winfree, R., Neeson, T. & Kremen, C. Complementary habitat use by wild bees in agro-natural landscapes. Ecol. Appl. 22, 1535–1546 (2012).

  40. 40.

    Moron, D. et al. Wild pollinator communities are negatively affected by invasion of alien goldenrods in grassland landscapes. Biol. Conserv. 142, 1322–1332 (2009).

  41. 41.

    Nienhuis, C. M., Dietzsch, A. C. & Stout, J. C. The impacts of an invasive alien plant and its removal on native bees. Apidologie 40, 450–463 (2009).

  42. 42.

    Lopezaraiza-Mikel, M. E., Hayes, R. B., Whalley, M. R. & Memmott, J. The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecol. Lett. 10, 539–550 (2007).

  43. 43.

    Schweiger, O. et al. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol. Rev. 85, 777–795 (2010).

  44. 44.

    Ramos-Jiliberto, R., Valdovinos, F. S., Moisset de Espanés, P. & Flores, J. D. Topological plasticity increases robustness of mutualistic networks. J. Anim. Ecol. 81, 896–904 (2012).

  45. 45.

    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

  46. 46.

    Montero-Castaño, A. & Vilà, M. Influence of the honeybee and trait similarity on the effect of a non-native plant on pollination and network rewiring. Funct. Ecol. 31, 142–152 (2017).

  47. 47.

    Bartomeus, I., Vilà, M. & Santamaria, L. Contrasting effects of invasive plants in plant–pollinator networks. Oecologia 155, 761–770 (2008).

  48. 48.

    Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).

  49. 49.

    Aizen, M. A., Morales, C. L. & Morales, J. M. Invasive mutualists erode native pollination webs. PLoS Biol. 6, e31 (2008).

  50. 50.

    Vanbergen, A. J., Woodcock, B. A., Heard, M. S. & Chapman, D. S. Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. Funct. Ecol. 31, 1285–1293 (2017).

  51. 51.

    Aizen, M. A. et al. The phylogenetic structure of plant–pollinator networks increases with habitat size and isolation. Ecol. Lett. 19, 29–36 (2016).

  52. 52.

    McKinney, A. M. & Goodell, K. Plant–pollinator interactions between an invasive and native plant vary between sites with different flowering phenology. Plant Ecol. 212, 1025–1035 (2011).

  53. 53.

    Albrecht, M., Ramis, M. R. & Traveset, A. Pollinator-mediated impacts of alien invasive plants on the pollination of native plants: the role of spatial scale and distinct behaviour among pollinator guilds. Biol. Invasions 18, 1801–1812 (2016).

  54. 54.

    Dietzsch, A., Stanley, D. & Stout, J. Relative abundance of an invasive alien plant affects native pollination processes. Oecologia 167, 469–479 (2011).

  55. 55.

    Thijs, K., Brys, R., Verboven, H. F. & Hermy, M. The influence of an invasive plant species on the pollination success and reproductive output of three riparian plant species. Biol. Invasions 14, 355–365 (2012).

  56. 56.

    Morales, C. L. & Traveset, A. A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol. Lett. 12, 716–728 (2009).

  57. 57.

    Brown, B. J., Mitchell, R. J. & Graham, S. A. Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology 83, 2328–2336 (2002).

  58. 58.

    Montero-Castaño, A. & Vilà, M. Impact of landscape alteration and invasions on pollinators: a meta-analysis. J. Ecol. 100, 884–893 (2012).

  59. 59.

    Carvalheiro, L. G. et al. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 17, 1389–1399 (2014).

  60. 60.

    Russo, L., Nichol, C. & Shea, K. Pollinator floral provisioning by a plant invader: quantifying beneficial effects of detrimental species. Divers. Distrib. 22, 189–198 (2016).

  61. 61.

    Bruckman, D. & Campbell, D. R. Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion. Am. J. Bot. 103, 1458–1465 (2016).

  62. 62.

    Morales, C. L. & Traveset, A. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221–238 (2008).

  63. 63.

    Chittka, L. & Schurkens, S. Successful invasion of a floral market—an exotic Asian plant has moved in on Europe’s river-banks by bribing pollinators. Nature 411, 653–653 (2001).

  64. 64.

    Bruckman, D. & Campbell, D. R. Timing of invasive pollen deposition influences pollen tube growth and seed set in a native plant. Biol. Invasions 18, 1701–1711 (2016).

  65. 65.

    Emer, C., Vaughan, I. P., Hiscock, S. & Memmott, J. The impact of the invasive alien plant, Impatiens glandulifera, on pollen transfer networks. PLoS ONE 10, e0143532 (2015).

  66. 66.

    Morales, C. L., Arbetman, M. P., Cameron, S. A. & Aizen, M. A. Rapid ecological replacement of a native bumble bee by invasive species. Front. Ecol. Environ. 11, 529–534 (2013).

  67. 67.

    Moritz, R. F. A., Hartel, S. & Neumann, P. Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12, 289–301 (2005).

  68. 68.

    Goulson, D. Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 34, 1–26 (2003).

  69. 69.

    Dohzono, I. & Yokoyama, J. Impacts of alien bees on native plant–pollinator relationships: a review with special emphasis on plant reproduction. Appl. Entomol. Zool. 45, 37–47 (2010).

  70. 70.

    Dafni, A., Kevan, P., Gross, C. L. & Goka, K. Bombus terrestris, pollinator, invasive and pest: an assessment of problems associated with its widespread introductions for commercial purposes. Appl. Entomol. Zool. 45, 101–113 (2010).

  71. 71.

    Ings, T. C., Ward, N. L. & Chittka, L. Can commercially imported bumble bees out-compete their native conspecifics? J. Appl. Ecol. 43, 940–948 (2006).

  72. 72.

    Hanna, C., Foote, D. & Kremen, C. Competitive impacts of an invasive nectar thief on plant–pollinator mutualisms. Ecology 95, 1622–1632 (2014).

  73. 73.

    Thomson, D. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85, 458–470 (2004).

  74. 74.

    Roubik, D. W. & Wolda, H. Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Popul. Ecol. 43, 53–62 (2001).

  75. 75.

    Yang, G. Harm of introducing the western honeybee Apis mellifera L. to the Chinese honeybee Apis cerana F. and its ecological impact. Acta Entomol. Sinica 3, 015 (2005).

  76. 76.

    Paini, D. R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: a review. Austral Ecol. 29, 399–407 (2004).

  77. 77.

    Hanna, C., Foote, D. & Kremen, C. Invasive species management restores a plant–pollinator mutualism in Hawaii. J. Appl. Ecol. 50, 147–155 (2013).

  78. 78.

    Montero-Castaño, A. & Vilà, M. Influence of the honeybee and trait similarity on the effect of a non-native plant on pollination and network rewiring. Funct. Ecol. 31, 142–152 (2017).

  79. 79.

    Kato, M. & Kawakita, A. Plant–pollinator interactions in New Caledonia influenced by introduced honey bees. Am. J. Bot. 91, 1814–1827 (2004).

  80. 80.

    Remnant, E. J. et al. Reproductive interference between honeybee species in artificial sympatry. Mol. Ecol. 23, 1096–1107 (2014).

  81. 81.

    Kondo, N. I. et al. Reproductive disturbance of Japanese bumblebees by the introduced European bumblebee Bombus terrestris. Naturwissenschaften 96, 467–475 (2009).

  82. 82.

    Brito, R. M., Francisco, F. O., Ho, S. Y. W. & Oldroyd, B. P. Genetic architecture of the Tetragonula carbonaria species complex of Australian stingless bees (Hymenoptera: Apidae: Meliponini). Biol. J. Linn. Soc. 113, 149–161 (2014).

  83. 83.

    Byatt, M. A., Chapman, N. C., Latty, T. & Oldroyd, B. P. The genetic consequences of the anthropogenic movement of social bees. Insectes Soc. 63, 15–24 (2016).

  84. 84.

    Aizen, M. A. & Feinsinger, P. Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine ‘Chaco Serrano’. Ecol. Appl. 4, 378–392 (1994).

  85. 85.

    Dick, C. W. Genetic rescue of remnant tropical trees by an alien pollinator. Proc. R. Soc. Lond. B 268, 2391–2396 (2001).

  86. 86.

    Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280 (2013).

  87. 87.

    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl Acad. Sci. USA 103, 13890–13895 (2006).

  88. 88.

    Aizen, M. A. et al. When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. New Phytol. 204, 322–328 (2014).

  89. 89.

    Sáez, A., Morales, C. L., Ramos, L. Y. & Aizen, M. A. Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J. Appl. Ecol. 51, 1603–1612 (2014).

  90. 90.

    Kenta, T., Inari, N., Nagamitsu, T., Goka, K. & Hiura, T. Commercialized European bumblebee can cause pollination disturbance: an experiment on seven native plant species in Japan. Biol. Conserv. 134, 298–309 (2007).

  91. 91.

    Arbetman, M. P., Meeus, I., Morales, C. L., Aizen, M. A. & Smagghe, G. Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biol. Invasions 15, 489–494 (2013).

  92. 92.

    Schmid-Hempel, R. et al. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83, 823–837 (2014).

  93. 93.

    Ji, R., Xie, B., Yang, G. & Li, D. From introduced species to invasive species—a case study on the Italian bee Apis mellifera L. Chinese J. Ecol. 22, 70–73 (2002).

  94. 94.

    Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306 (2012).

  95. 95.

    Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597 (2016).

  96. 96.

    Brosi, B. J., Delaplane, K. S., Boots, M. & de Roode, J. C. Ecological and evolutionary approaches to managing honeybee disease. Nat. Ecol. Evol. 1, 1250–1262 (2017).

  97. 97.

    McMahon, D. P. et al. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc. R. Soc. B 283, 20160811 (2016).

  98. 98.

    Ryabov, E. V. et al. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 10, e1004230 (2014).

  99. 99.

    Furst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

  100. 100.

    McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624 (2015).

  101. 101.

    Singh, R. et al. RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 5, e14357 (2010).

  102. 102.

    Monceau, K., Bonnard, O. & Thiery, D. Vespa velutina: a new invasive predator of honeybees in Europe. J. Pest Sci. 87, 1–16 (2014).

  103. 103.

    Keeling, M. J., Franklin, D. N., Datta, S., Brown, M. A. & Budge, G. E. Predicting the spread of the Asian hornet (Vespa velutina) following its incursion into Great Britain. Sci. Rep. 7, 6240 (2017).

  104. 104.

    Hansen, D. M. & Müller, C. B. Invasive ants disrupt gecko pollination and seed dispersal of the endangered plant Roussea simplex in Mauritius. Biotropica 41, 202–208 (2009).

  105. 105.

    Lach, L. A mutualism with a native membracid facilitates pollinator displacement by Argentine ants. Ecology 88, 1994–2004 (2007).

  106. 106.

    Hanna, C. et al. Floral visitation by the Argentine ant reduces bee visitation and plant seed set. Ecology 96, 222–230 (2015).

  107. 107.

    Abe, T., Wada, K., Kato, Y., Makino, S. & Okochi, I. Alien pollinator promotes invasive mutualism in an insular pollination system. Biol. Invasions 13, 957–967 (2011).

  108. 108.

    Vazquez, D. P. & Simberloff, D. Changes in interaction biodiversity induced by an introduced ungulate. Ecol. Lett. 6, 1077–1083 (2003).

  109. 109.

    Vazquez, D. P. & Simberloff, D. Indirect effects of an introduced ungulate on pollination and plant reproduction. Ecol. Monogr. 74, 281–308 (2004).

  110. 110.

    Stokl, J., Brodmann, J., Dafni, A., Ayasse, M. & Hansson, B. S. Smells like aphids: orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proc. R. Soc. B 278, 1216–1222 (2011).

  111. 111.

    Kessler, A., Halitschke, R. & Poveda, K. Herbivory-mediated pollinator limitation: negative impacts of induced volatiles on plant–pollinator interactions. Ecology 92, 1769–1780 (2011).

  112. 112.

    Barber, N. A., Adler, L. S., Theis, N., Hazzard, R. V. & Kiers, E. T. Herbivory reduces plant interactions with above- and belowground antagonists and mutualists. Ecology 93, 1560–1570 (2012).

  113. 113.

    Desurmont, G. A. et al. Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant Cell Environ. 37, 1854–1865 (2014).

  114. 114.

    Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).

  115. 115.

    Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19, 1277–1286 (2016).

  116. 116.

    Sauve, A. M. C., Fontaine, C. & Thébault, E. Structure–stability relationships in networks combining mutualistic and antagonistic interactions. Oikos 123, 378–384 (2014).

  117. 117.

    Carvallo, G. O., Medel, R. & Navarro, L. Assessing the effects of native plants on the pollination of an exotic herb, the blueweed Echium vulgare (Boraginaceae). Arthropod Plant Interact. 7, 475–484 (2013).

  118. 118.

    Guimaraes, P. R. Jr, Jordano, P. & Thompson, J. N. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14, 877–885 (2011).

  119. 119.

    Gloag, R. et al. An invasive social insect overcomes genetic load at the sex locus. Nat. Ecol. Evol. 1, 0011 (2016).

  120. 120.

    Arbetman, M. P., Gleiser, G., Morales, C. L., Williams, P. & Aizen, M. A. Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proc. R. Soc. B. 284, 20170204 (2017).

  121. 121.

    Santini, A. et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 197, 238–250 (2013).

  122. 122.

    Shykoff, J. A. & Bucheli, E. Pollinator visitation patterns, floral rewards and the probability of transmission of Microbotryum violaceum, a venereal disease of plants. J. Ecol. 83, 189–198 (1995).

  123. 123.

    Roy, B. A. The effects of pathogen-induced pseudoflowers and buttercups on each others visitation. Ecology 75, 352–358 (1994).

  124. 124.

    Li, J. L. et al. Systemic spread and propagation of a plant–pathogenic virus in European honeybees. Apis mellifera. mBio 5, e00898-13 (2014).

  125. 125.

    Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).

  126. 126.

    Brown, M. J. F. et al. A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ 4, e2249 (2016).

  127. 127.

    Roy, H. E. et al. Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. Glob. Change Biol. 20, 3859–3871 (2014).

  128. 128.

    Keeling, M. J. et al. Efficient use of sentinel sites: detection of invasive honeybee pests and diseases in the UK. J. R. Soc. Interface 14, 20160908 (2017).

  129. 129.

    Prior, K. M., Robinson, J. M., Meadley Dunphy, S. A. & Frederickson, M. E. Mutualism between co-introduced species facilitates invasion and alters plant community structure. Proc. R. Soc. B 282, 20142846 (2015).

  130. 130.

    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).

  131. 131.

    Blackburn, T. M., Lockwood, J. L. & Cassey, P. The influence of numbers on invasion success. Mol. Ecol. 24, 1942–1953 (2015).

  132. 132.

    Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).

  133. 133.

    Gomulkiewicz, R., Nuismer, S. L. & Thompson, J. N. Coevolution in variable mutualisms. Am. Nat. 162, S80–S93 (2003).

  134. 134.

    Stotz, G. C., Gianoli, E. & Cahill, J. F. Spatial pattern of invasion and the evolutionary responses of native plant species. Evol. Appl. 9, 939–951 (2016).

Download references


We thank S. G. Potts and V. Imperatriz-Fonseca (co-chairs), H. Ngo (secretary) and all the expert authors and reviewers of the IPBES Assessment Report on Pollinators, Pollination and Food Production3,13 for their leadership, support, input and comments. We also thank H. Lowther for creating the figures in this Review. A.J.V. was supported by NERC-CEH National Capability Funding (NEC05106). A.E. was supported by the Swiss National Science Foundation (grants P300P3_151141 and PBNEP3_140192). M.A.A. was partially supported by FONCYT (PICT 2015-2333).

Author information

A.J.V. conceived and led this Review. A.E. and M.A.A. provided insight and co-wrote the Review. All authors performed revisions following peer review.

Correspondence to Adam J. Vanbergen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanbergen, A.J., Espíndola, A. & Aizen, M.A. Risks to pollinators and pollination from invasive alien species. Nat Ecol Evol 2, 16–25 (2018). https://doi.org/10.1038/s41559-017-0412-3

Download citation

Further reading