Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Risks to pollinators and pollination from invasive alien species

Abstract

Invasive alien species modify pollinator biodiversity and the services they provide that underpin ecosystem function and human well-being. Building on the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) global assessment of pollinators and pollination, we synthesize current understanding of invasive alien impacts on pollinators and pollination. Invasive alien species create risks and opportunities for pollinator nutrition, re-organize species interactions to affect native pollination and community stability, and spread and select for virulent diseases. Risks are complex but substantial, and depend greatly on the ecological function and evolutionary history of both the invader and the recipient ecosystem. We highlight evolutionary implications for pollination from invasive alien species, and identify future research directions, key messages and options for decision-making.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual synthesis of the direct and indirect impacts on native pollinators and native plant pollination from invasive alien species of plants, predators, introduced pollinators and their pests and pathogens.
Fig. 2: Invasive alien plant impact on pollinator visitation and network structure.
Fig. 3: Global movement of managed pollinators and risk of altered host–vector–pathogen dynamics.
Fig. 4: Complex interactions between alien predators, alien and native pollinators, and native plants transform and maintain pollination in highly modified ecosystems.

Similar content being viewed by others

References

  1. Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Vanbergen, A. J., The Insect Pollinators Initiative. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).

    Article  Google Scholar 

  3. IPBES Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, 2016).

  4. Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

    Article  Google Scholar 

  5. Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

    Article  Google Scholar 

  6. Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).

    Article  Google Scholar 

  7. Albrecht, M., Padrón, B., Bartomeus, I. & Traveset, A. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proc. R. Soc. B 281, 20140773 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goodell, K. & Parker, I. M. Invasion of a dominant floral resource: effects on the floral community and pollination of native plants. Ecology 98, 57–69 (2017).

    Article  PubMed  Google Scholar 

  9. Herron-Sweet, C. R., Lehnhoff, E. A., Burkle, L. A., Littlefield, J. L. & Mangold, J. M. Temporal- and density-dependent impacts of an invasive plant on pollinators and pollination services to a native plant. Ecosphere 7, e01233 (2016).

    Article  Google Scholar 

  10. Jones, E. I. & Gomulkiewicz, R. Biotic interactions, rapid evolution, and the establishment of introduced species. Am. Nat. 179, E28–E36 (2012).

    Article  PubMed  Google Scholar 

  11. Vandepitte, K. et al. Rapid genetic adaptation precedes the spread of an exotic plant species. Mol. Ecol. 23, 2157–2164 (2014).

    Article  PubMed  Google Scholar 

  12. Bossdorf, O. et al. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144, 1–11 (2005).

    Article  PubMed  Google Scholar 

  13. IPBES The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, 2016).

  14. Traveset, A. & Richardson, D. M. Mutualistic interactions and biological invasions. Annu. Rev. Ecol. Evol. Syst. 45, 89–113 (2014).

    Article  Google Scholar 

  15. Traveset, A. & Richardson, D. M. Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol. Evol. 21, 208–216 (2006).

    Article  PubMed  Google Scholar 

  16. Bjerknes, A. L., Totland, O., Hegland, S. J. & Nielsen, A. Do alien plant invasions really affect pollination success in native plant species? Biol. Conserv. 138, 1–12 (2007).

    Article  Google Scholar 

  17. Stout, J. C. & Morales, C. L. Ecological impacts of invasive alien species on bees. Apidologie 40, 388–409 (2009).

    Article  Google Scholar 

  18. Uesugi, A. & Kessler, A. Herbivore exclusion drives the evolution of plant competitiveness via increased allelopathy. New Phytol. 198, 916–924 (2013).

    Article  PubMed  Google Scholar 

  19. Pysek, P. et al. Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecol. Monogr. 81, 277–293 (2011).

    Article  Google Scholar 

  20. Morales, C. L. & Traveset, A. A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol. Lett. 12, 716–728 (2009).

    Article  PubMed  Google Scholar 

  21. Chrobock, T. et al. Effects of native pollinator specialization, self-compatibility and flowering duration of European plant species on their invasiveness elsewhere. J. Ecol. 101, 916–923 (2013).

    Article  Google Scholar 

  22. Masters, J. A. & Emery, S. M. The showy invasive plant Ranunculus ficaria facilitates pollinator activity, pollen deposition, but not always seed production for two native spring ephemeral plants. Biol. Invasions 17, 2329–2337 (2015).

    Article  Google Scholar 

  23. Traveset, A. et al. Invaders of pollination networks in the Galápagos Islands: emergence of novel communities. Proc. R. Soc. B 280, 20123040 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vilà, M. et al. Invasive plant integration into native plant–pollinator networks across Europe. Proc. R. Soc. B 276, 3887–3893 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kleijn, D. & Raemakers, I. A retrospective analysis of pollen host plant use by stable and declining bumble bee species. Ecology 89, 1811–1823 (2008).

    Article  PubMed  Google Scholar 

  26. Harmon-Threatt, A. N. & Kremen, C. Bumble bees selectively use native and exotic species to maintain nutritional intake across highly variable and invaded local floral resource pools. Ecol. Entomol. 40, 471–478 (2015).

    Article  Google Scholar 

  27. Sedivy, C., Muller, A. & Dorn, S. Closely related pollen generalist bees differ in their ability to develop on the same pollen diet: evidence for physiological adaptations to digest pollen. Funct. Ecol. 25, 718–725 (2011).

    Article  Google Scholar 

  28. Paoli, P. et al. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449–1458 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890 (2014).

    Article  Google Scholar 

  32. Jha, S. & Kremen, C. Resource diversity and landscape-level homogeneity drive native bee foraging. Proc. Natl Acad. Sci. USA 110, 555–558 (2013).

    Article  PubMed  Google Scholar 

  33. Tasei, J.-N. & Aupinel, P. Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39, 397–409 (2008).

    Article  CAS  Google Scholar 

  34. Praz, C. J., Müller, A. & Dorn, S. Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen? Ecology 89, 795–804 (2008).

    Article  PubMed  Google Scholar 

  35. Palladini, J. & Maron, J. Reproduction and survival of a solitary bee along native and exotic floral resource gradients. Oecologia 176, 789–798 (2014).

    Article  PubMed  Google Scholar 

  36. Vanderplanck, M. et al. The importance of pollen chemistry in evolutionary host shifts of bees. Sci. Rep. 7, 43058 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tiedeken, E. J. et al. Nectar chemistry modulates the impact of an invasive plant on native pollinators. Funct. Ecol. 30, 885–893 (2016).

    Article  Google Scholar 

  38. Arnold, S. E. J., Peralta Idrovo, M. E., Lomas Arias, L. J., Belmain, S. R. & Stevenson, P. C. Herbivore defence compounds occur in pollen and reduce bumblebee colony fitness. J. Chem. Ecol. 40, 878–881 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Mandelik, Y., Winfree, R., Neeson, T. & Kremen, C. Complementary habitat use by wild bees in agro-natural landscapes. Ecol. Appl. 22, 1535–1546 (2012).

    Article  PubMed  Google Scholar 

  40. Moron, D. et al. Wild pollinator communities are negatively affected by invasion of alien goldenrods in grassland landscapes. Biol. Conserv. 142, 1322–1332 (2009).

    Article  Google Scholar 

  41. Nienhuis, C. M., Dietzsch, A. C. & Stout, J. C. The impacts of an invasive alien plant and its removal on native bees. Apidologie 40, 450–463 (2009).

    Article  Google Scholar 

  42. Lopezaraiza-Mikel, M. E., Hayes, R. B., Whalley, M. R. & Memmott, J. The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecol. Lett. 10, 539–550 (2007).

    Article  PubMed  Google Scholar 

  43. Schweiger, O. et al. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol. Rev. 85, 777–795 (2010).

    PubMed  Google Scholar 

  44. Ramos-Jiliberto, R., Valdovinos, F. S., Moisset de Espanés, P. & Flores, J. D. Topological plasticity increases robustness of mutualistic networks. J. Anim. Ecol. 81, 896–904 (2012).

    Article  PubMed  Google Scholar 

  45. CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

    Article  PubMed  Google Scholar 

  46. Montero-Castaño, A. & Vilà, M. Influence of the honeybee and trait similarity on the effect of a non-native plant on pollination and network rewiring. Funct. Ecol. 31, 142–152 (2017).

    Article  Google Scholar 

  47. Bartomeus, I., Vilà, M. & Santamaria, L. Contrasting effects of invasive plants in plant–pollinator networks. Oecologia 155, 761–770 (2008).

    Article  PubMed  Google Scholar 

  48. Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Aizen, M. A., Morales, C. L. & Morales, J. M. Invasive mutualists erode native pollination webs. PLoS Biol. 6, e31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vanbergen, A. J., Woodcock, B. A., Heard, M. S. & Chapman, D. S. Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. Funct. Ecol. 31, 1285–1293 (2017).

    Article  Google Scholar 

  51. Aizen, M. A. et al. The phylogenetic structure of plant–pollinator networks increases with habitat size and isolation. Ecol. Lett. 19, 29–36 (2016).

    Article  PubMed  Google Scholar 

  52. McKinney, A. M. & Goodell, K. Plant–pollinator interactions between an invasive and native plant vary between sites with different flowering phenology. Plant Ecol. 212, 1025–1035 (2011).

    Article  Google Scholar 

  53. Albrecht, M., Ramis, M. R. & Traveset, A. Pollinator-mediated impacts of alien invasive plants on the pollination of native plants: the role of spatial scale and distinct behaviour among pollinator guilds. Biol. Invasions 18, 1801–1812 (2016).

    Article  Google Scholar 

  54. Dietzsch, A., Stanley, D. & Stout, J. Relative abundance of an invasive alien plant affects native pollination processes. Oecologia 167, 469–479 (2011).

    Article  PubMed  Google Scholar 

  55. Thijs, K., Brys, R., Verboven, H. F. & Hermy, M. The influence of an invasive plant species on the pollination success and reproductive output of three riparian plant species. Biol. Invasions 14, 355–365 (2012).

    Article  Google Scholar 

  56. Morales, C. L. & Traveset, A. A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol. Lett. 12, 716–728 (2009).

    Article  PubMed  Google Scholar 

  57. Brown, B. J., Mitchell, R. J. & Graham, S. A. Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology 83, 2328–2336 (2002).

    Article  Google Scholar 

  58. Montero-Castaño, A. & Vilà, M. Impact of landscape alteration and invasions on pollinators: a meta-analysis. J. Ecol. 100, 884–893 (2012).

    Article  Google Scholar 

  59. Carvalheiro, L. G. et al. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 17, 1389–1399 (2014).

    Article  PubMed  Google Scholar 

  60. Russo, L., Nichol, C. & Shea, K. Pollinator floral provisioning by a plant invader: quantifying beneficial effects of detrimental species. Divers. Distrib. 22, 189–198 (2016).

    Article  Google Scholar 

  61. Bruckman, D. & Campbell, D. R. Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion. Am. J. Bot. 103, 1458–1465 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Morales, C. L. & Traveset, A. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221–238 (2008).

    Article  CAS  Google Scholar 

  63. Chittka, L. & Schurkens, S. Successful invasion of a floral market—an exotic Asian plant has moved in on Europe’s river-banks by bribing pollinators. Nature 411, 653–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Bruckman, D. & Campbell, D. R. Timing of invasive pollen deposition influences pollen tube growth and seed set in a native plant. Biol. Invasions 18, 1701–1711 (2016).

    Article  Google Scholar 

  65. Emer, C., Vaughan, I. P., Hiscock, S. & Memmott, J. The impact of the invasive alien plant, Impatiens glandulifera, on pollen transfer networks. PLoS ONE 10, e0143532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morales, C. L., Arbetman, M. P., Cameron, S. A. & Aizen, M. A. Rapid ecological replacement of a native bumble bee by invasive species. Front. Ecol. Environ. 11, 529–534 (2013).

    Article  Google Scholar 

  67. Moritz, R. F. A., Hartel, S. & Neumann, P. Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12, 289–301 (2005).

    Article  Google Scholar 

  68. Goulson, D. Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 34, 1–26 (2003).

    Article  Google Scholar 

  69. Dohzono, I. & Yokoyama, J. Impacts of alien bees on native plant–pollinator relationships: a review with special emphasis on plant reproduction. Appl. Entomol. Zool. 45, 37–47 (2010).

    Article  Google Scholar 

  70. Dafni, A., Kevan, P., Gross, C. L. & Goka, K. Bombus terrestris, pollinator, invasive and pest: an assessment of problems associated with its widespread introductions for commercial purposes. Appl. Entomol. Zool. 45, 101–113 (2010).

    Article  Google Scholar 

  71. Ings, T. C., Ward, N. L. & Chittka, L. Can commercially imported bumble bees out-compete their native conspecifics? J. Appl. Ecol. 43, 940–948 (2006).

    Article  Google Scholar 

  72. Hanna, C., Foote, D. & Kremen, C. Competitive impacts of an invasive nectar thief on plant–pollinator mutualisms. Ecology 95, 1622–1632 (2014).

    Article  PubMed  Google Scholar 

  73. Thomson, D. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85, 458–470 (2004).

    Article  Google Scholar 

  74. Roubik, D. W. & Wolda, H. Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Popul. Ecol. 43, 53–62 (2001).

    Article  Google Scholar 

  75. Yang, G. Harm of introducing the western honeybee Apis mellifera L. to the Chinese honeybee Apis cerana F. and its ecological impact. Acta Entomol. Sinica 3, 015 (2005).

    Google Scholar 

  76. Paini, D. R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: a review. Austral Ecol. 29, 399–407 (2004).

    Article  Google Scholar 

  77. Hanna, C., Foote, D. & Kremen, C. Invasive species management restores a plant–pollinator mutualism in Hawaii. J. Appl. Ecol. 50, 147–155 (2013).

    Article  Google Scholar 

  78. Montero-Castaño, A. & Vilà, M. Influence of the honeybee and trait similarity on the effect of a non-native plant on pollination and network rewiring. Funct. Ecol. 31, 142–152 (2017).

    Article  Google Scholar 

  79. Kato, M. & Kawakita, A. Plant–pollinator interactions in New Caledonia influenced by introduced honey bees. Am. J. Bot. 91, 1814–1827 (2004).

    Article  PubMed  Google Scholar 

  80. Remnant, E. J. et al. Reproductive interference between honeybee species in artificial sympatry. Mol. Ecol. 23, 1096–1107 (2014).

    Article  PubMed  Google Scholar 

  81. Kondo, N. I. et al. Reproductive disturbance of Japanese bumblebees by the introduced European bumblebee Bombus terrestris. Naturwissenschaften 96, 467–475 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Brito, R. M., Francisco, F. O., Ho, S. Y. W. & Oldroyd, B. P. Genetic architecture of the Tetragonula carbonaria species complex of Australian stingless bees (Hymenoptera: Apidae: Meliponini). Biol. J. Linn. Soc. 113, 149–161 (2014).

    Article  Google Scholar 

  83. Byatt, M. A., Chapman, N. C., Latty, T. & Oldroyd, B. P. The genetic consequences of the anthropogenic movement of social bees. Insectes Soc. 63, 15–24 (2016).

    Article  Google Scholar 

  84. Aizen, M. A. & Feinsinger, P. Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine ‘Chaco Serrano’. Ecol. Appl. 4, 378–392 (1994).

    Article  Google Scholar 

  85. Dick, C. W. Genetic rescue of remnant tropical trees by an alien pollinator. Proc. R. Soc. Lond. B 268, 2391–2396 (2001).

    Article  CAS  Google Scholar 

  86. Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280 (2013).

  87. Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl Acad. Sci. USA 103, 13890–13895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aizen, M. A. et al. When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. New Phytol. 204, 322–328 (2014).

    Article  Google Scholar 

  89. Sáez, A., Morales, C. L., Ramos, L. Y. & Aizen, M. A. Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J. Appl. Ecol. 51, 1603–1612 (2014).

    Article  Google Scholar 

  90. Kenta, T., Inari, N., Nagamitsu, T., Goka, K. & Hiura, T. Commercialized European bumblebee can cause pollination disturbance: an experiment on seven native plant species in Japan. Biol. Conserv. 134, 298–309 (2007).

    Article  Google Scholar 

  91. Arbetman, M. P., Meeus, I., Morales, C. L., Aizen, M. A. & Smagghe, G. Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biol. Invasions 15, 489–494 (2013).

    Article  Google Scholar 

  92. Schmid-Hempel, R. et al. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83, 823–837 (2014).

    Article  PubMed  Google Scholar 

  93. Ji, R., Xie, B., Yang, G. & Li, D. From introduced species to invasive species—a case study on the Italian bee Apis mellifera L. Chinese J. Ecol. 22, 70–73 (2002).

    Google Scholar 

  94. Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Brosi, B. J., Delaplane, K. S., Boots, M. & de Roode, J. C. Ecological and evolutionary approaches to managing honeybee disease. Nat. Ecol. Evol. 1, 1250–1262 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. McMahon, D. P. et al. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc. R. Soc. B 283, 20160811 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ryabov, E. V. et al. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 10, e1004230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Furst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Singh, R. et al. RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 5, e14357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Monceau, K., Bonnard, O. & Thiery, D. Vespa velutina: a new invasive predator of honeybees in Europe. J. Pest Sci. 87, 1–16 (2014).

    Article  Google Scholar 

  103. Keeling, M. J., Franklin, D. N., Datta, S., Brown, M. A. & Budge, G. E. Predicting the spread of the Asian hornet (Vespa velutina) following its incursion into Great Britain. Sci. Rep. 7, 6240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hansen, D. M. & Müller, C. B. Invasive ants disrupt gecko pollination and seed dispersal of the endangered plant Roussea simplex in Mauritius. Biotropica 41, 202–208 (2009).

    Article  Google Scholar 

  105. Lach, L. A mutualism with a native membracid facilitates pollinator displacement by Argentine ants. Ecology 88, 1994–2004 (2007).

    Article  PubMed  Google Scholar 

  106. Hanna, C. et al. Floral visitation by the Argentine ant reduces bee visitation and plant seed set. Ecology 96, 222–230 (2015).

    Article  PubMed  Google Scholar 

  107. Abe, T., Wada, K., Kato, Y., Makino, S. & Okochi, I. Alien pollinator promotes invasive mutualism in an insular pollination system. Biol. Invasions 13, 957–967 (2011).

    Article  Google Scholar 

  108. Vazquez, D. P. & Simberloff, D. Changes in interaction biodiversity induced by an introduced ungulate. Ecol. Lett. 6, 1077–1083 (2003).

    Article  Google Scholar 

  109. Vazquez, D. P. & Simberloff, D. Indirect effects of an introduced ungulate on pollination and plant reproduction. Ecol. Monogr. 74, 281–308 (2004).

    Article  Google Scholar 

  110. Stokl, J., Brodmann, J., Dafni, A., Ayasse, M. & Hansson, B. S. Smells like aphids: orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proc. R. Soc. B 278, 1216–1222 (2011).

    Article  PubMed  Google Scholar 

  111. Kessler, A., Halitschke, R. & Poveda, K. Herbivory-mediated pollinator limitation: negative impacts of induced volatiles on plant–pollinator interactions. Ecology 92, 1769–1780 (2011).

    Article  PubMed  Google Scholar 

  112. Barber, N. A., Adler, L. S., Theis, N., Hazzard, R. V. & Kiers, E. T. Herbivory reduces plant interactions with above- and belowground antagonists and mutualists. Ecology 93, 1560–1570 (2012).

    Article  PubMed  Google Scholar 

  113. Desurmont, G. A. et al. Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant Cell Environ. 37, 1854–1865 (2014).

    Article  PubMed  Google Scholar 

  114. Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).

    Article  PubMed  Google Scholar 

  115. Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19, 1277–1286 (2016).

    Article  PubMed  Google Scholar 

  116. Sauve, A. M. C., Fontaine, C. & Thébault, E. Structure–stability relationships in networks combining mutualistic and antagonistic interactions. Oikos 123, 378–384 (2014).

    Article  Google Scholar 

  117. Carvallo, G. O., Medel, R. & Navarro, L. Assessing the effects of native plants on the pollination of an exotic herb, the blueweed Echium vulgare (Boraginaceae). Arthropod Plant Interact. 7, 475–484 (2013).

    Article  Google Scholar 

  118. Guimaraes, P. R. Jr, Jordano, P. & Thompson, J. N. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14, 877–885 (2011).

    Article  PubMed  Google Scholar 

  119. Gloag, R. et al. An invasive social insect overcomes genetic load at the sex locus. Nat. Ecol. Evol. 1, 0011 (2016).

    Article  Google Scholar 

  120. Arbetman, M. P., Gleiser, G., Morales, C. L., Williams, P. & Aizen, M. A. Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proc. R. Soc. B. 284, 20170204 (2017).

  121. Santini, A. et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 197, 238–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Shykoff, J. A. & Bucheli, E. Pollinator visitation patterns, floral rewards and the probability of transmission of Microbotryum violaceum, a venereal disease of plants. J. Ecol. 83, 189–198 (1995).

    Article  Google Scholar 

  123. Roy, B. A. The effects of pathogen-induced pseudoflowers and buttercups on each others visitation. Ecology 75, 352–358 (1994).

    Article  Google Scholar 

  124. Li, J. L. et al. Systemic spread and propagation of a plant–pathogenic virus in European honeybees. Apis mellifera. mBio 5, e00898-13 (2014).

    PubMed  Google Scholar 

  125. Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Brown, M. J. F. et al. A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ 4, e2249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Roy, H. E. et al. Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. Glob. Change Biol. 20, 3859–3871 (2014).

    Article  Google Scholar 

  128. Keeling, M. J. et al. Efficient use of sentinel sites: detection of invasive honeybee pests and diseases in the UK. J. R. Soc. Interface 14, 20160908 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Prior, K. M., Robinson, J. M., Meadley Dunphy, S. A. & Frederickson, M. E. Mutualism between co-introduced species facilitates invasion and alters plant community structure. Proc. R. Soc. B 282, 20142846 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).

    Article  Google Scholar 

  131. Blackburn, T. M., Lockwood, J. L. & Cassey, P. The influence of numbers on invasion success. Mol. Ecol. 24, 1942–1953 (2015).

    Article  PubMed  Google Scholar 

  132. Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).

    Article  Google Scholar 

  133. Gomulkiewicz, R., Nuismer, S. L. & Thompson, J. N. Coevolution in variable mutualisms. Am. Nat. 162, S80–S93 (2003).

    Article  PubMed  Google Scholar 

  134. Stotz, G. C., Gianoli, E. & Cahill, J. F. Spatial pattern of invasion and the evolutionary responses of native plant species. Evol. Appl. 9, 939–951 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. G. Potts and V. Imperatriz-Fonseca (co-chairs), H. Ngo (secretary) and all the expert authors and reviewers of the IPBES Assessment Report on Pollinators, Pollination and Food Production3,13 for their leadership, support, input and comments. We also thank H. Lowther for creating the figures in this Review. A.J.V. was supported by NERC-CEH National Capability Funding (NEC05106). A.E. was supported by the Swiss National Science Foundation (grants P300P3_151141 and PBNEP3_140192). M.A.A. was partially supported by FONCYT (PICT 2015-2333).

Author information

Authors and Affiliations

Authors

Contributions

A.J.V. conceived and led this Review. A.E. and M.A.A. provided insight and co-wrote the Review. All authors performed revisions following peer review.

Corresponding author

Correspondence to Adam J. Vanbergen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanbergen, A.J., Espíndola, A. & Aizen, M.A. Risks to pollinators and pollination from invasive alien species. Nat Ecol Evol 2, 16–25 (2018). https://doi.org/10.1038/s41559-017-0412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0412-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing