Abstract
Animal diversification on Earth has long been presumed to be associated with the increasing extent of oxic niches. Here, we challenge that view. We start with the fact that hypoxia (<1–3% O2) maintains cellular immaturity (stemness), whereas adult stem cells continuously—and paradoxically—regenerate animal tissue in oxygenated settings. Novel insights from tumour biology illuminate how cell stemness nevertheless can be achieved through the action of oxygen-sensing transcription factors in oxygenated, regenerating tissue. We suggest that these hypoxia-inducible transcription factors provided animals with unprecedented control over cell stemness that allowed them to cope with fluctuating oxygen concentrations. Thus, a refinement of the cellular hypoxia-response machinery enabled cell stemness at oxic conditions and, then, animals to evolve into the oxic realm. This view on the onset of animal diversification is consistent with geological evidence and provides a new perspective on the challenges and evolution of multicellular life.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Origin and evolution of animal multicellularity in the light of phylogenomics and cancer genetics
Medical Oncology Open Access 16 August 2022
-
The issues with tissues: the wide range of cell fate separation enables the evolution of multicellularity and cancer
Medical Oncology Open Access 13 June 2020
-
Evolution of metazoan oxygen-sensing involved a conserved divergence of VHL affinity for HIF1α and HIF2α
Nature Communications Open Access 23 July 2019
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Knoll, A. H. & Carrol, S. B. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2130–2137 (1999).
Nursall, J. R. Oxygen as a prerequisite to the origin of the metazoa. Nature 183, 1170–1172 (1959).
Buravkova, L. B., Andreeva, E. R., Gogvadze, V. & Zhivotovsky, B. Mesenchymal stem cells and hypoxia:where are we. Mitochondrion 19, 105–112 (2014).
Ivanovic, Z. Hypoxia or in situ normoxia: the stem cell paradigm. J. Cell. Physiol. 219, 271–275 (2009).
Vaapil, M. et al. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells. PLoS ONE 7, e46543 (2012).
Gezer, D., Vukovic, M., Soga, T., Pollard, P. J. & Kranc, K. R. Concise review: genetic dissection of hypoxia signaling pathways in normal and leukemic Stem cells. Stem Cells 32, 1390–1397 (2014).
Pietras, A. et al. High levels of HIF-2α highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. J. Pathol. 214, 482–488 (2008).
Mohlin, S., Hamidian, A. & Påhlman, S. HIF2A and IGF2 expression correlates in human neuroblastoma cells and normal immature sympathetic neuroblasts. Neoplasia 15, 328–338 (2013).
Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).
Haase, V. H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27, 41–53 (2013).
Holmquist-Mengelbier, L. et al. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell. 10, 413–423 (2006).
Canfield, D. E. in Treatise on Geochemistry 2nd edn, Vol. 6 (eds Holland, H. D. & Turekian, K. K.) 197–216 (Elsevier, Oxford, 2014).
McKeown, S. R. Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response. Br. J. Radiol. 87, 20130676 (2014).
Gorr, T. et al. Hypoxia tolerance in animals: biology and application. Physiol. Biochem. Zool. 83, 733–752 (2010).
Hochachka, P. & Lutz, P. Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B 130, 435–459 (2001).
Massabuau, J.-C. From low arterial- to low tissue-oxygenation strategy. An evolutionary theory. Resp. Physiol. 128, 249–261 (2001).
Mohyeldin, A., Garzón-Muvdi, T. & Quiñones-Hinojosa, A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell. Stem Cell. 7, 150–161 (2010).
Munksgaard Persson, M. et al.HIF-2α expression is suppressed in SCLC cells, which survive in moderateand severe hypoxia when HIF-1α is repressed. Am. J. Pathol. 180, 494–504 (2012).
Mentel, M. & Martin, W. Anaerobic animals from an ancient, anoxic ecological niche. BMC Biol. 8, 32 (2010).
Ivanovic, Z. & Vlaski-Lafarge, M. Anaerobiosis and Stemness: An Evolutionary Paradigm for Therapeutic Applications (Academic Press, Boston, 2016).
Hochachka, P. W. Living Without Oxygen (Harvard Univ. Press, Cambridge, 1980).
Biggart, M. J. & Boh, D. J. Effect of hypothermia and cardiac arrest on outcome of near-drowning accidents in children. J. Pediatr. 117, 179–183 (1990).
Melvin, A. & Rocha, S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell. Signal. 24, 35–43 (2012).
Gaspar-Maia, A., Alajem, A., Meshorer, E. & Ramalho-Santos, M. Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell. Biol. 12, 36–47 (2011).
Loenarz, C. et al. The hypoxia‐inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep. 12, 63–70 (2011).
Rytkönen, K. T., Williams, T. A., Renshaw, G. M., Primmer, C. R. & Nikinmaa, M. Molecular evolution of the metazoan PHD–HIF oxygen-sensing system. Mol. Biol. Evol. 28, 1913–1926 (2011).
Graham, A. M. & Presnell, J. S. Hypoxia inducible factor (HIF) transcription factor family expansion, diversification, divergence and selection in eukaryotes. PLoS ONE 12, e0179545 (2017).
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
Davies, P. & Lineweaver, C. Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Phys. Biol. 8, 015001 (2011).
Jögi, A. et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc. Natl Acad. Sci. USA 99, 7021–7026 (2002).
Helczynska, K. et al. Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res. 63, 1441–1444 (2003).
Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W. & McKnight, S. L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes. Dev. 12, 3320–3324 (1998).
Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 15, 501–513 (2009).
Dahia, P. L. M. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat. Rev. Cancer 14, 108–119 (2014).
Mohlin, S., Wigerup, C., Jögi, A. & Påhlman, S. Hypoxia, pseudohypoxia and cellular differentiation. Exp. Cell. Res. 356, 192–196 (2017).
Salama, R. et al. Heterogeneous effects of direct hypoxia pathway activation in kidney cancer. PLoS. ONE 10, e0134645 (2015).
Wong, W. J., Richardson, T., Seykora, J. T., Cotsarelis, G. & Simon, M. C. Hypoxia-inducible factors regulate filaggrin expression and epidermal barrier function. J. Invest. Dermatol. 135, 454–461 (2015).
Nilsson, H. et al. HIF-2α expression in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose deficiency, and hypoxia. Exp. Cell. Res. 303, 447–456 (2005).
Rouault-Pierre, K. et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell. Stem Cell. 13, 549–563 (2013).
To, K. K. W., Sedelnikova, O. A., Samons, M., Bonner, W. M. & Huang, L. E. The phosphorylation status of PAS‐B distinguishes HIF‐1α from HIF‐2α in NBS1 repression. EMBO J. 25, 4784–4794 (2006).
Covello, K. L. et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006).
Simon, M. C. & Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell. Biol. 9, 285–296 (2008).
Marshall, C. R. Explaining the Cambrian “explosion” of animals. Annu. Rev. Earth Planet. Sci. 34, 355–384 (2006).
Fernàndez-Busquets, X. et al. Cell adhesion-related proteins as specific markers of sponge cell types involved in allogeneic recognition. Dev. Comp. Immunol. 26, 313–323 (2002).
Money, N. P. Mushroom stem cells. Bioessays 24, 949–952 (2002).
Hoffmann, F. et al. An anaerobic world in sponges. Geomicrobiol. J. 22, 1–10 (2005).
Juliano, C. & Wessel, G. Versatile germline genes. Science 329, 640–641 (2010).
Valentine, J. W., Collins, A. G. & Meyer, C. P. Morphological complexity increase in metazoans. Paleobiology 20, 131–142 (1994).
Rose, S. M. A hierarchy of self-limiting reactions as the basis of cellular differentiation and growth control. Am. Nat. 86, 337–354 (1952).
El Albani, A. et al. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466, 100–104 (2010).
Waldbauer, J. R., Newman, D. K. & Summons, R. E. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proc. Natl Acad. Sci. USA 108, 13409–13414 (2011).
Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).
Zhou, X. et al. Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res. 70, 4214–4221 (2010).
Canfield, D. E. Oxygen: A Four Billion Year History (Princeton Univ. Press, Princeton, 2014).
Marshall, C. R. Explaining the Cambrian “explosion” of animals. Annu. Rev. Earth Planet. Sci. 34, 355–384 (2006).
Shu, D. G. et al. Lower Cambrian vertebrates from south China. Nature 402, 42–46 (1999).
Finch, C. E. Longevity, Senescence, and the Genome (Univ. Chicago Press, Chicago, 1994).
Saul, J. M. & Schwartz, L. Cancer as a consequence of the rising level of oxygen in the Late Precambrian. Lethaia 40, 211–220 (2007).
Stücker, M. et al. The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J. Physiol. 538, 985–994 (2002).
Vidal, G. & Nystuen, J. P. Micropaleontology, depositional environment, and biostratigraphy of the Upper Proterozoic Hedmark Group, Southern Norway. Am. J. Sci. 290, 170–211 (1990).
Gee, H. Before the Backbone: Views on the Origin of the Vertebrates (Springer, Bury St Edmunds, 1996).
Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9, 391–403 (2006).
Losick, V. P., Morris, L. X., Fox, D. T. & Spradling, A. Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev. Cell. 21, 159–171 (2011).
Biteau, B., Hochmuth, C. E. & Jasper, H. Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell. Stem Cell. 9, 402–411 (2011).
Parle, E., Dirks, J.-H. & Taylor, D. Bridging the gap: wound healing in insects restores mechanical strength by targeted cuticle deposition. J. R. Soc. Interf. 13, 20150984 (2016).
Wigglesworth, V. Wound healing in an insect (Rhodnius prolixus Hemiptera). J. Exp. Biol. 14, 364–381 (1937).
May, R. M. How many species are there on Earth? Science 241, 1441–1449 (1988).
Hoback, W. W. & Stanley, D. W. Insects in hypoxia. J. Insect Physiol. 47, 533–542 (2001).
Harrison, J. et al. Responses of terrestrial insects to hypoxia or hyperoxia. Resp. Physiol. Neurobiol. 154, 4–17 (2006).
Punt, A. The respiration of insect. Physiol. Comp. Oecol. 2, 59–63 (1950).
Hetz, S. K. & Bradley, T. J. Insects breathe discontinuously to avoid oxygen toxicity. Nature 433, 516–519 (2005).
Frouz, J. The effect of nest moisture on daily temperature regime in the nests of Formica polyctena wood ants. Insect Soc. 47, 229–235 (2000).
Van Nerum, K. & Buelens, H. Hypoxia-controlled winter metabolism in honeybees (Apis mellifera). Comp. Biochem. Physiol. A 117, 445–455 (1997).
Sohal, R. S., Agarwal, S., Dubey, A. & Orr, W. C. Protein oxidative damage is associated with life expectancy of houseflies. Proc. Natl Acad. Sci. USA 90, 7255–7259 (1993).
Kloek, G., Ridgel, G. & Ralin, D. Survivorship and life expectancy of Drosophila melanogaster populations in abnormal oxygen-normal pressure regimes. Aviat. Space Environ. Med. 47, 1174–1176 (1976).
Riisgård, H. U., Kittner, C. & Seerup, D. F. Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration. J. Exp. Mar. Biol. Ecol. 284, 105–127 (2003).
Clemens, S., Massabuau, J.-C., Meyrand, P. & Simmers, J. Changes in motor network expression related to moulting behaviour in lobster: role of moult-induced deep hypoxia. J. Exp. Biol. 202, 817–827 (1999).
Chung, J. S., Dircksen, H. & Webster, S. G. A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc. Natl Acad. Sci. USA 96, 13103–13107 (1999).
Pechenik, J. A. Biology of the Invertebrates (McGraw-Hill Higher Education, New York, 2010).
Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA 112, 12122–12126 (2015).
KiØrboe, T. Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol. Oceanogr. 45, 479–484 (2000).
Tang, K. W., Glud, R. N., Glud, A., Rysgaard, S. & Nielsen, T. G. Copepod guts as biogeochemical hotspots in the sea: evidence from microelectrode profiling of Calanus spp. Limnol. Oceanogr. 56, 666–672 (2011).
Sperling, E. A., Halverson, G. P., Knoll, A. H., Macdonald, F. A. & Johnston, D. T. A basin redox transect at the dawn of animal life. Earth Planet. Sci. Lett. 371–372, 143–155 (2013).
Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).
Ryan, H. E., Lo, J. & Johnson, R. S. HIF‐1α is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005–3015 (1998).
Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes. Dev. 12, 149–162 (1998).
West, C. M., van der Wel, H. & Wang, Z. A. Prolyl 4-hydroxylase-1 mediates O2 signaling during development of Dictyostelium. Development 134, 3349–3358 (2007).
Hughes, B. T. & Espenshade, P. J. Oxygen‐regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member. EMBO J. 27, 1491–1501 (2008).
Fredlund, E., Ringnér, M., Maris, J. M. & Påhlman, S. High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proc. Natl. Acad. Sci. USA 105, 14094–14099 (2008).
Sperling, E. A., Knoll, A. H. & Girguis, P. R. The ecological physiology of Earth's second oxygen revolution. Annu. Rev. Ecol. Evol. Syst. 46, 215–235 (2015).
Gray, J. S., Wu, R. S.-s & Or, Y. Y. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar. Ecol. Prog. Ser. 238, 249–279 (2002).
Gunda, V. G. & Janapala, V. R. Effects of dissolved oxygen levels on survival and growth in vitro of Haliclona pigmentifera (Demospongiae). Cell. Tissue Res. 337, 527–535 (2009).
Levin, L. in Oceanography and Marine Biology: An Annual Review Vol. 41 (eds Gibson, R. N. & Atkinson, R. J. A.) 1–45 (Taylor & Francis, London, 2003).
Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284, 16767–16775 (2009).
Schödel, J. et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117, e207–e217 (2011).
Talks, K. L. et al. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157, 411–421 (2000).
Bracken, C. P. et al. Cell-specific regulation of hypoxia-inducible factor (HIF)-1α and HIF-2α stabilization and transactivation in a graded oxygen environment. J. Biol. Chem. 281, 22575–22585 (2006).
Shen, C. & Kaelin, W. G. The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23, 18–25 (2013).
Jochmanová, I., Yang, C., Zhuang, Z. & Pacak, K. Hypoxia-inducible factor signaling in pheochromocytoma: turning the rudder in the right direction. J. Natl. Cancer Inst. 105, 1270–1283 (2013).
McNicol, A. M. Update on tumours of the adrenal cortex, phaeochromocytoma and extra‐adrenal paraganglioma. Histopathology 58, 155–168 (2011).
Acknowledgements
We thank S. Beckman for expert technical assistance. We thank colleagues for helpful criticism and comments, in particular, M. Andersen, S. Bengtson, C. Bjerrum, D. Canfield, K. Hancke, D. Mills, K. Mitchell, S. Molin, A. Pietras, E. Pope Seyum, J. Robertson and I. Øra. This work was supported by the team at NordCEE and by grants from the Swedish Research Council (2015-04693), Danish National Research Foundation (Grant DNRF53), the ERC (Oxygen Grant 267233), the Swedish Cancer Society, the Swedish Childhood Cancer Foundation, the Fru Berta Kamprad Foundation, Region Skåne and Skåne University Hospital research funds.
Author information
Authors and Affiliations
Contributions
E.U.H. initiated the study. E.U.H. and S.P. developed the concept and designed the experiments. E.U.H. and K.v.S. performed the experiments. E.U.H., K.v.S. and S.P. analysed the data and wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary text, Supplementary Table 1, Supplementary Figures and Supplementary References
Supplementary Dataset
Supplementary Tables 2 and 3a,b
Rights and permissions
About this article
Cite this article
Hammarlund, E.U., von Stedingk, K. & Påhlman, S. Refined control of cell stemness allowed animal evolution in the oxic realm. Nat Ecol Evol 2, 220–228 (2018). https://doi.org/10.1038/s41559-017-0410-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-017-0410-5
This article is cited by
-
Origin and evolution of animal multicellularity in the light of phylogenomics and cancer genetics
Medical Oncology (2022)
-
Recognizing hypoxia in phaeochromocytomas and paragangliomas
Nature Reviews Endocrinology (2020)
-
The issues with tissues: the wide range of cell fate separation enables the evolution of multicellularity and cancer
Medical Oncology (2020)
-
Evolution of metazoan oxygen-sensing involved a conserved divergence of VHL affinity for HIF1α and HIF2α
Nature Communications (2019)
-
Valuable snapshots of deep time
Nature Geoscience (2018)